Published Date
, Volume 49, Issue 10, pp 4003–4012
Original Article
Cite this article as:
Sliseris, J., Andrä, H., Kabel, M. et al. Mater Struct (2016) 49: 4003. doi:10.1617/s11527-015-0769-1
Abstract
This paper presents numerical methods for the characterization of fiber orientation and fiber bundles of medium density wood fiberboards (MDF). The strength and stiffness of MDF is significantly affected by the fiber orientation and fiber bundles. Proposed methods and results are necessary to virtually generate realistic fiber networks and optimize MDF by using computer simulations. Based on 3D CT images for laboratory manufactured MDF with oriented fibers, the fiber orientation is calculated in two ways. Firstly, we use an image processing method based on Hessian matrix directly on CT image. Secondly, we computed the effective heat conductivity by solving PDEs on a segmentation of the CT image to estimate the fiber orientation. A fiber bundle segmentation method based on local fiber orientations is introduced. Fiber bundles, which are segmented by this method show good agreement with manually segmented ones. It was observed that fiber bundles are oriented in MDF plane with log-normal distribution of bundle length. The proposed methods are general and can be used also to calculate fiber orientation and segment fiber bundles in fiber concrete, paper, glass and carbon fiber composites.
References
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S0009250913001929
, Volume 49, Issue 10, pp 4003–4012
Original Article
- First Online:
- 29 December 2015
DOI: 10.1617/s11527-015-0769-1
Author
Abstract
This paper presents numerical methods for the characterization of fiber orientation and fiber bundles of medium density wood fiberboards (MDF). The strength and stiffness of MDF is significantly affected by the fiber orientation and fiber bundles. Proposed methods and results are necessary to virtually generate realistic fiber networks and optimize MDF by using computer simulations. Based on 3D CT images for laboratory manufactured MDF with oriented fibers, the fiber orientation is calculated in two ways. Firstly, we use an image processing method based on Hessian matrix directly on CT image. Secondly, we computed the effective heat conductivity by solving PDEs on a segmentation of the CT image to estimate the fiber orientation. A fiber bundle segmentation method based on local fiber orientations is introduced. Fiber bundles, which are segmented by this method show good agreement with manually segmented ones. It was observed that fiber bundles are oriented in MDF plane with log-normal distribution of bundle length. The proposed methods are general and can be used also to calculate fiber orientation and segment fiber bundles in fiber concrete, paper, glass and carbon fiber composites.
References
- Xavier J, Belini U, Pierron F, Morais J, Lousada J, Tomazello M (2012) Characterisation of the bending stiffness components of MDF panels from full-field slope measurements. Wood Sci. Technol 47(2):423–441CrossRefGoogle Scholar
- 2.Sliseris J, Andrä H, Kabel M, Dix B, Plinke B, Wirjadi O, Frolovs G (2014) Numerical prediction of the stiffness and strength of medium density fiberboards. Mech Mater 79:73–84CrossRefGoogle Scholar
- 3.S. Heyden. Network modelling for the evaluation of mechanical properties of cellulose fiber fluff. Ph.D. thesis, Division of Structural Mechanics, LTH, Lund University, 2000
- 4.Awal A, Ghosh SB, Sain M (2009) Development and morphological characterization of wood pulp reinforced biocomposite fibers. J Mater Sci 44:2876–2881CrossRefGoogle Scholar
- 5.Akay M, Barkley D (1991) fibre orientation and mechanical behaviour in reinforced thermoplastic injection mouldings. J Mater Sci 26:2731–2742CrossRefGoogle Scholar
- 6.Laranjeira F, Grnewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111CrossRefGoogle Scholar
- 7.Barnett Sj, Lataste J-F, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023CrossRefGoogle Scholar
- 8.Viguié J, Latil P, Orgéas L, Dumont PJJ, Rolland du Roscoat S, Bloch J-F, Marulier C, Guiraud O (2013) Finding fibres and their contacts within 3D images of disordered fibrous media. Composit Sci Technol 89:202–210CrossRefGoogle Scholar
- 9.Redenbach C, Rack A, Schladitz K, Wirjadi O, Godehardt M (2012) Beyond imaging: on the quantitative analysis of tomographic volume data. Int J Mater Res (formerly Zeitschrift fuer Metallkunde) 103(02):217–227CrossRefGoogle Scholar
- 10.Krause M, Hausherr JM, Burgeth B, Herrmann C, Krenkel W (2009) Determination of the fibre orientation in composites using the structure tensor and local X-ray transform. J Mater Sci 45(4):888–896CrossRefGoogle Scholar
- 11.Robb K, Wirjadi O, Schladitz K (2007) Fiber orientation estimation from 3D image data: practical algorithms, visualization, and interpretation. In: 7th international conference on hybrid intelligent systems (HIS 2007), pp 320–325, Sept 2007
- 12.Nishimura T, Ansell MP (2002) Fast Fourier transform and filtered image analyses of fiber orientation in OSB. Wood Sci Technol 36(4):287–307CrossRefGoogle Scholar
- 13.Bernasconi A, Cosmi F, Hine PJ (2012) Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Composi Sci Technol 72(16):2002–2008CrossRefGoogle Scholar
- 14.Suuronen J-P, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre-reinforced concrete (sfrc) by X-ray tomography. J Mater Sci 48:1358–1367CrossRefGoogle Scholar
- 15.Wille K, Tue NV, Parra-Montesinos GJ (2014) Fiber distribution and orientation in uhp-frc beams and their effect on backward analysis. Mater Struct 47(11):1825–1838CrossRefGoogle Scholar
- 16.Graupner N, Beckmann F, Wilde F, Müssig J (2014) Using synchroton radiation-based micro-computer tomography (sr l-ct) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (pla) composites. J Mater Sci 49:450–460CrossRefGoogle Scholar
- 17.Schulgasser K (1985) Fiber orientation in machine-made paper. J Mater Sci 20:859–866CrossRefGoogle Scholar
- 18.Tran H, Doumalin P, Delisee C, Dupre JC, Malvestio J, Germaneau A (2013) 3d mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and digital volume correlation. J Mater Sci 48:3198–3212CrossRefGoogle Scholar
- 19.Behzad T, Sain M (2007) Measurement and prediction of thermal conductivity for hemp fiber reinforced composites. Polym Eng Sci 47(7):977–983CrossRefGoogle Scholar
- 20.Wang M, Kang Q, Pan N (2009) Thermal conductivity enhancement of carbon fiber composites. Appl Therm Eng 29(2):418–421CrossRefGoogle Scholar
- 21.Wirjadi O (2009) Models and algorithms for image-based analysis of microstructures. Ph.D. thesis, Technical University Kaiserslautern
- 22.Altendorf H, Jeulin D (2009) 3D directional mathematical morphology for analysis of fiber orientations. Image Anal Stereol 28:143–153MathSciNetCrossRefMATHGoogle Scholar
- 23.Thoemen H, Walther T, Wiegmann A (2008) 3D simulation of macroscopic heat and mass transfer properties from the microstructure of wood fibre networks. Composit Sci Technol 68(3–4):608–616CrossRefGoogle Scholar
- 24.Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(12):69–94MathSciNetCrossRefMATHGoogle Scholar
- 25.Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys 6(01):41–47CrossRefGoogle Scholar
- 26.Fisher NI, Lewis T, Embleton BJJ (1987) Statistical analysis of spherical data. Cambridge University Press, Cambridge
- 27.Liang H, Zhang C, Yan M (2009) A feldkamp-type approximate algorithm for helical multislice CT using extended scanning helix. Comput Med Imaging Graph 33(3):197–204CrossRefGoogle Scholar
- 28.MAVI 1.5.1.http://www.itwm.fraunhofer.de/abteilungen/bildverarbeitung/mikrostrukturanalyse/mavi.html . Accessed 10 Feb 2015
- 29.FeelMath. http://www.itwm.fraunhofer.de/abteilungen/stroemungs-und-materialsimulation/festkoerpermechanik/feelmath.html. Accessed 10 Feb 2015
- 30.Götz T, Klar A, Marheineke N, Wegener R (2007) A stochastic model and associated fokker-planck equation for the fiber lay-down process in nonwoven production processes. SIAM J Appl Math 67(6):1704–1717MathSciNetCrossRefMATHGoogle Scholar
- 31.GeoDict 2015. http://geodict.de/. Accessed 10 Feb 2015
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S0009250913001929
No comments:
Post a Comment