Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Wednesday, 12 October 2016

Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon

Published Date
doi:10.1016/j.arabjc.2014.01.020
Open Access, Creative Commons license, Funding information
In Press, Corrected Proof — Note to users
Original article
Author 
  • Aseel M. Aljeboree a
  • Abbas N. Alshirifi b
  • Ayad F. Alkaim a,,
  • aDepartment of Chemistry, College of Sciences for Women, Babylon University, Hilla, Iraq
  • bDepartment of Chemistry, College of Sciences, Babylon University, Hilla, Iraq
Received 29 June 2013. Accepted 28 January 2014. Available online 4 February 2014

Abstract 

The preparation of activated carbon from coconut husk with H2SO4 activation (CSAC) and its ability to remove textile dyes (maxilon blue GRL, and direct yellow DY 12), from aqueous solutions were reported in this study. The adsorbent was characterized with Fourier transform infrared spectrophotometer (FT-IR), and scanning electron microscope (SEM). Various physiochemical parameters such as, contact time, initial dye concentration, adsorbent dosage, particle size, pH of dye solution and temperature were investigated in a batch-adsorption technique. Result showed that the adsorption of both GRL and DY 12 dyes was favorable at acidic pH. The adsorption uptake was found to increase with increase in initial dye concentration, and contact time but decreases with the amount of adsorbent, particle size, and temperature of the system. The chemisorption, intra-particle diffuse, pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second order exhibited the best fit for the kinetic studies, which indicates that adsorption of (GRL, and DY 12) is limited by chemisorption process. The equilibrium data were evaluated using Langmuir, Freundlich, Temkin and Fritz–Schlunder isotherms. The Fritz–Schlunder model best describes the uptake of (GRL and DY 12) dye, which implies that the adsorption of textiles dyes in this study onto coconut husk activated carbon is heterogeneous with multi-layers. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that (GRL and DY 12) dye adsorption was spontaneous and endothermic.

Keywords


  • Activated carbon
  • Adsorption
  • Isotherm
  • Kinetics
  • Thermodynamics



  • 1 Introduction

    Water pollution is one of the most undesirable environmental problems in the world and it requires solutions. Textile industries produce a lot of wastewater, which contains a number of contaminants, including acidic or caustic dissolved solids, toxic compounds, and any different dyes, many of these dyes are carcinogenic, mutagenic, and teratogenic and also toxic to human beings, fish species, and microorganisms. Hence, their removal from aquatic wastewater becomes environmentally important (Konicki et al., 2013).
    Large quantities of dangerous dyes, pigments and metals originated from dye manufacturing, textile as well as pulp and paper industries are emitted into wastewaters. This makes treating water contamination difficult , because the color tends to persist even after the conventional removal processes (Visa et al., 2010). The dye contaminations in water tend to prevent light penetration and therefore, affect photosynthesis considerably (Banerjee and Chattopadhyaya, 2013, Hajati et al., 2014and Hameed et al., 2013). Due to the wide application of dye compound and their numerous hazard and toxic derivatives, the cleaning of wastewater from color dyestuff becomes environmentally important (Ghaedi et al., 2013). Although, synthetic origins aromatic dyes are even biologically non-degradable and their treatment by other effective conventional procedure is impossible.
    There are several methods available for color removal from waters and wastewaters such as membrane separation, aerobic and anaerobic degradation using various microorganisms, chemical oxidation, coagulation and flocculation, and reverse osmosis. Some of these techniques have been shown to be effective however they have some limitations such as excess amount of chemical usage, accumulation of concentrated sludge that has serious disposal problems and lack of effective color reduction. The adsorption technique, which is based on the transfer of pollutants from the solution to the solid phase, is known as one of the efficient and general wastewater treatment method (Ghaedi et al., 2012). The method is superior to other dye removal techniques in terms of initial cost, simplicity of design, ease of operation, and non-toxicity of the utilized adsorbents compared to other conventional wastewater treatment methods (Kismir and Aroguz, 2011). The cost effectiveness, availability and adsorptive properties are the main criteria in selection of an adsorbent to remove organic compounds from wastewaters (Demirbas et al., 2008 and Ghaedi et al., 2012), also application of adsorption procedure especially based on non-toxic and green adsorbent with high surface area and reactive surface atom is a great demand (Chiou and Chuang, 2006).
    Activated carbon, a widely used adsorbent in industrial processes, is composed of a microporous, homogenous structure with high surface area and shows radiation stability (Iqbal and Ashiq, 2007). The process for producing high-efficiency activated carbon is not completely investigated in developing countries. Furthermore, there are many problems with the regeneration of used activated carbon. Nowadays, there is a great interest in finding inexpensive and effective alternatives to the existing commercial activated carbon (AlOthman et al., 2013). Exploring effective and low-cost activated carbon may contribute to environmental sustainability and offer benefits for future commercial applications. The costs of activated carbon prepared from biomaterials are very low compared to the cost of commercial activated carbon. Waste materials that have been successfully used to manufacture activated carbon in the recent past include waste wood (Acharya et al., 2009), bagasse (Tsai et al., 2001), coir pith (Namasivayam and Kavitha, 2002), orange peel (Khaled et al., 2009), coffee husk (Ahmad and Rahman, 2011), pine cone (Gecgel and Kolancilar, 2012), coconut tree (Senthilkumaar et al., 2006), sunflower seed hull (Thinakaran et al., 2008), pine-fruit shell (Royer et al., 2009), hazelnut husks, rice hulls, oil palm shell (Tan et al., 2008), and Coconut husk (Foo and Hameed, 2012).
    The objective of this work is to study the static capacity of adsorption of textile dyes (GRL, and DY 12) by the prepared activated carbons derived by coconut shells (CSAC). The effects of contact time, initial dye concentration, mass dosage, temperature, and pH on the static adsorption of the dye onto the prepared CSAC were examined. The pseudo-first order and pseudo-second order models are used to correlate the adsorption kinetics data of GRL and DY 12 onto prepared activated carbons. The kinetics as well as the diffusion parameters are also evaluated. Thermodynamic studies have also been performed to understand the processes of removal of the selected dyes on CSAC.

    2 Experimental

    2.1 Materials and methods

    Maxilon blue GRL [λmax = 599 nm] and direct yellow DY 12 [λmax = 403 nm] were obtained from Al-Hilla¸ Textile Company (Babylon, Iraq). The chemical structures of maxilon blue GRL and direct yellow DY 12 are shown in Fig. 1. Concentrations of dyes were determined by finding out the absorbance at the characteristic wavelength using a double beam UV/Vis spectrophotometer (UV–Visible spectrophotometer, Shimadzu 1650). Calibration curves were plotted between absorbance and concentration of the dye solution.
    Figure 1. Chemical structures of both dyes maxilon blue (GRL), and direct yellow (DY 12).

    2.2 Preparation of H2SO4-activated carbon (CSAC)

    Coconut shells are obtained from the Iraqis local markets and were used as precursors. Firstly, they were washed with distilled water to remove any adhering impurities, and then dried at 110 °C for 24 h followed by grinding and sieving in order to use particles size ranged between 1 mm and 2 mm. H2SO4/activated carbon sample (CSAC) was prepared via two steps: carbonization of dried precursor at 500 °C for 2 h in the absence of air using a muffle furnance (600 × 40 mm) at a rate of 10 °C/min up to 500 °C. The carbonized sample was cooled and soaked with certain weight of H2SO4 (20 g of carbonized sample with 60 g of H2SO4 (50%)) in 100 ml distilled water for 24 h at room temperature, followed by drying at 110 °C and finally activated at 600 °C for 4 h. Prepared sample was washed several times with distilled water till neutral filtrate and then dried at 110 °C to constant weight and finally stored in a clean dry glass bottle.

    2.3 Characterization of prepared H2SO4-activated carbon (CSAC)

    Infrared spectra of the adsorbents were obtained using a Fourier transform infrared spectrometer (FTIR-2000, PerkinElmer). For the FT-IR study, finely ground adsorbent has been intimately mixed with KBr (Merck) in a ratio of 1:100 in order to prepare a translucent pellet. From these FT-IR spectra the presence of functional groups on the adsorbent were confirmed. The surface morphology of the activated carbon particles was analyzed using a scanning electron microscope (JEOL-JSM-6380 LA, Japan). The carbon particles were mounted on sample stubs and coated with gold foil using a gold-coating machine (JEOL-JSM-420, Japan). The samples were then automatically analyzed using computer software.

    2.4 Kinetic experiments

    Adsorption kinetic experiments were carried out using shaker water bath. All of the dye solution was prepared with distilled water. Kinetic experiments were carried out by agitating 100 ml of solution of a constant dye concentration with 50 mg of CSAC at a constant agitation speed, 20 °C and natural pH. Agitation was made for 120 min, which is more than sufficient time to reach equilibrium at a constant stirring speed of 120 rpm. Preliminary experiments had shown that the effect of the separation time on the adsorbed amount of dye was negligible. Two milliliters of samples was drawn at suitable time intervals. The samples were then centrifuged for 15 min at 5000 rpm and the left out concentration in the supernatant solution was analysed using UV–vis spectrophotometer by monitoring the absorbance changes at a wavelength of maximum absorbance (599 and 403 nm for GRL and DY 12 respectively). Each experiment continued until equilibrium conditions were reached when no further decrease in the dye concentration was measured. Calibration curves were plotted between absorbance and concentration of the dye solution. It was investigated the effects of the following parameters to the removal rate of maxilon blue GRL and direct yellow DY 12 dyes on CSAC in the experiments.

    2.5 Effect of different parameters of adsorption processes of GRL and DY 12 on CSAC

    2.5.1 Effect of initial dye concentration

    The initial tested concentrations of dyes were 2, 4, 6, 8, 10, 12, 14, and 16 mg/L for both dyes at different pH, temperature, particle size, and mass dosage.

    2.5.2 Effect of pH

    The effect of pH on the rate of color removal was analyzed in the pH range at 3, 6, 8 and 10 at 20 °C, 120 rpm, 50 mg of CSAC (particle size 75 μm) and 100 mL of dye concentration (2–16) mg/L. The pH was adjusted using 0.1 N NaOH and 0.1 N HCl solutions by using an Orion 920A pH-meter with a combined pH electrode. pH-meter was standardized with NBS buffers before every measurement.

    2.5.3 Effect of solution temperature

    The effect of temperature to the adsorption capacity of CSAC was carried out at 10, 20, 30, and 40 °C in a constant temperature bath at natural solution pH 6, 120 rpm 50 mg of CSAC (particle size 75 μm) and 100 mL of dye concentration (2–16) mg/L.

    2.5.4 Effect of mass dosage

    The effect of mass dosage was studied by agitating in different masses (0.005, 0.01, 0.05, and 0.5 g), at 20 °C, 120 rpm, 50 mg of CSAC (particle size 75 μm) and 100 mL of (DY 12 or GRL) dye concentration (2–16) mg/L.

    2.5.5 Effect of particle size

    The effect of particle size to the adsorption capacity of CSAC was carried out in (50, 75, and 106 μm), at 20 °C, pH 6, 120 rpm, 50 mg of CSAC and 100 mL of dye concentration (2–16) mg/L.

    2.6 Data evaluation

    Adsorption kinetics investigations were carried out by agitating 100 mL of GRL, and DY 12 dye solutions of known initial concentration with 0.5 g/L of adsorbent at a known temperature of 318 K, at pH of 6.0 ± 0.2 and at 120 rpm for different time intervals. The amount of dye adsorbed onto the adsorbent at equilibrium, qe (mg/g), was calculated by the following expression:
    equation1
    where C0 and Ce are the initial and equilibrium dye concentrations in mg/L respectively, V is the volume of solution (L) and W is the mass of the CSAC adsorbent (g), the amount of adsorption at time t, qt (mg/g) was calculated by:
    equation2
    where C0 and Ct (mg/g) are the liquid phase concentrations of the dye at initial and any time t, respectively. V is the volume of solution (L) and W is the mass of the CSAC adsorbent (g).

    3 Results and discussion

    3.1 Surface characterizations

    In order to detect the functionality present in CSAC prior to and after (GRL and DY 12) dyes adsorbed. Adsorption in the infrared (IR) region takes place (4000–400 cm−1) due to the rotational and vibrational movement of the molecular groups and chemical bond of a molecule. The FT-IR spectra were obtained to evaluate qualitatively the chemical structures of CSAC. (Fig. 2(a)) shows the FT-IR spectrum of CSAC, which indicated various surface functional groups. The broadband at around 3500 cm−1 is typically attributed to hydroxyl groups. The region of the spectrum of 2220 cm−1 is attributed to alkyne group (Ctriple bond; length as m-dashC). The region of the spectrum of 1612 cm−1 is attributed to axial deformation of carbonyl groups (Cdouble bond; length as m-dashO) (Cazetta et al., 2011). The presence of hydroxyl groups, carbonyl group, ethers and aromatic compounds is an evidence of the lignocellulosic structure of coconut shell as also observed in other materials such as Brazilian coconut shell (Cazetta et al., 2011), and jackfruit peel waste (Prahas et al., 2008), (Fig. 2(b and c) shows there is no real shift in our absorption peaks but the intensity becomes higher after absorption, this is indicated as a physical adsorption.
    Figure 2. FT-IR spectra of (a) CSAC derived from coconut shell (b) DY 12 adsorbed on the surface of CSAC, and (c) GRL adsorbed on the surface of CSAC.
    Scanning electron microscopy (SEM) has been a primary tool for characterizing the surface morphology and fundamental physical properties of the adsorbent. SEM of adsorbent material was taken before and after dye adsorption on CSAC (Fig. 3). From (Fig. 3a), it is clear, there is a good possibility for dyes to be trapped and adsorbed into these pores. The SEM pictures of adsorbed samples show very distinguished dark spots which can be taken as a sign for effective adsorption of dye molecules in the cavities and pores of this adsorbent. The micrographs presented in (Figs. 3b and c) show clearly the dye-loaded adsorbent coated by dye molecules over the whole surface at natural pH conditions. The dye molecules seem to have formed a void-free film masking the reliefs of particles and porosity of the aggregates (Kismir and Aroguz, 2011).
    Figure 3. Scanning electron micrographs (SEM): (a) CSAC before adsorption process, (b) CSAC adsorbed with GRL and (c) CSAC adsorbed with DY 12.

    3.2 Adsorption kinetics modeling

    Study of adsorption kinetics is important because the rate of adsorption (which is one of the criteria for efficiency of adsorbent) and also the mechanism of adsorption can be concluded from kinetic studies. Fig. 4 shows the variation of the amount of adsorbed (qt) as a function of time. The rate of adsorption for both dyes is high at initial times of adsorption. For both dyes most of adsorption takes place within 10 min which indicate that the rate of dye adsorption by CSAC is high.
    Figure 4. Adsorption rate curves (a) GRL dye, and (b) DY 12 dye: experimental conditions: pH 6, dye conc. 10 mg/L, particle size 75 μm, Temp. 293 K and mass catalyst 0.05 g).
    In order to analyze the adsorption kinetics of GRL and DY 12 by CSAC the pseudo-first order (Lagergren, 1898), pseudo-second order (Ho and McKay, 1999), Elovich equation (Low, 1960), and intra-particle diffusion (Weber and Morris, 1963), were tested. The result of fitting is listed in Table 1. A simple kinetic analysis of adsorption (pseudo-first-order equation) is in the form:
    equation3
    where qt is the amount of adsorbate adsorbed at time t (mg g−1), qe is the adsorption capacity in the equilibrium (mg g−1), kf is the pseudo-first-order rate constant (min−1), and t is the contact time (min).
    Table 1. Pseudo first-order, pseudo second-order, chemisorption and intraparticle diffusion model constants and correlation coefficients for (GRL and DY 12 dyes) adsorption onto CSAC.
    Kinetic modelDyeParametersValueStandard errorR2
    Pseudo-first orderGRLkf (min−1)0.130880.009340.99233
    qe (mg g−1)13.199590.21266
    DY 12kf (min−1)0.061790.009080.97437
    qe (mg g−1)2.733030.1311
    Pseudo-second orderGRLks (g mg−1 min−1)0.011130.000660.99304
    qe (mg g−1)15.073270.19122
    h0 (mg g−1 min−1)2.52877-
    DY 12ks (g mg−1 min−1)0.018370.002830.97400
    qe (mg g−1)3.436050.18306
    h0 (mg g−1 min−1)0.21688-
    ChemisorptionGRLα (mg g−1 min−1)7.746410.705630.98955
    β (g min−1)0.36160.028329
    DY 12α (mg g−1 min−1)0.489450.12310.99057
    β (g min−1)1.345180.06879
    Intra-particle diffusionGRLkid (mg g−1 min−0.5)1.686320.245660.86823
    DY 12kid (mg g−1 min−0.5)0.360530.013280.99058
    A pseudo-second-order equation based on adsorption equilibrium capacity may be expressed in the form:
    equation4
    where Ks is the the pseudo-first-order rate constant (g gm−1 min−1), the initial sorption rate (ho, expressed in mg g−1 min−1) can be obtained when t approaches to zero, Eq. (5)
    equation5
    The Elovich equation used for general application to chemisorption. The equation has been applied satisfactorily to some chemisorption processes and has been found to cover a wide range of slow adsorption rates. The same equation is often valid for systems in which the adsorbing surface is heterogeneous, and is formulated as:
    equation6
    The intra-particle diffusion model based on the theory proposed by Weber and Morris (Weber and Morris, 1963) was used to identify the diffusion mechanism. According to this theory, the adsorbate uptake qt varies almost proportionally with the square root of the contact time, t½ rather than t, Eq.(7).
    equation7
    where I is the intercept and Kid (mg g−1 min−1/2) is the intra-particle diffusion rate constant.
    Fig. 4 represents the variation of dye adsorption on CSAC with shaking time (0–60 min) and initial dye solution concentration of 10.0 mg/L. Fig. 4 indicates that while the adsorption of dyes was quite rapid initially, the rate of adsorption became slower with the time and reached a constant value (equilibrium time). The initial faster rate may be due to the availability of the uncovered surface area of the adsorbents. (Kilic et al., 2011 and Shi et al., 2013).
    All the experimental data showed better compliance with chemisorptions kinetic model for GRL and DY 12 in terms of higher correlation coefficient values R2 > 0.989. Moreover, the q values calculated (qe,cal) from pseudo first-order model were more consistent with the experimental q values (qe,exp) than those calculated from the pseudo second-order model.

    3.3 Effect of different parameters of adsorption processes of GRL and DY 12 on CSAC

    3.3.1 Effect of pH

    The effect pH was investigated on the adsorption of GRL and DY 12 on CSAC at a pH of 3–10 for 2 h. The result in Fig. 5 showed that maximum adsorption of GRL, and DY 12 was obtained at the lowest pH 3 while the lowest adsorption was at pH 10.
    Figure 5. Effect of solution pH on adsorption (a) GRL, and (b) DY 12 experimental conditions: Temp. 293 K, CSAC dosage 50 mg/L, and particle size 75 μm.
    As the pH of the solution increases, adsorption of both dyes GRL and DY 12 was found to be decreasing; this was due to the extinction of the positive hydrogen ions thereby promoting activities of electrostatic repulsion between the negative charges of both dye and the CSAC surface (Auta and Hameed, 2011). While at an acidic pH, the functional groups of activated carbon become protonated, which are mainly the carboxylic groups ( ), phenolic ( ) and chromenic group (Al-Degs et al., 2008). At pH 3, the surface charge of CSAC becomes more positively charged, which enhances (GRL and DY 12) adsorption through electrostatic attraction.

    3.3.2 Effect of adsorbent dose

    Fig. 6 shows the adsorption of both dyes GRL and DY 12 as a function of adsorbent dosage. It is apparent that by increasing the adsorbent dose the amount of adsorbed dye increases but adsorption density, the amount adsorbed per unit mass, decreases. It is readily understood that the number of available adsorption sites increases by increasing the adsorbent dose and it, therefore, results in an increase of the amount of adsorbed dye (Hameed et al., 2013). The decrease in adsorption density with an increase in the adsorbent dose is mainly because of adsorption sites remain unsaturated during the adsorption reaction whereas the number of sites available for adsorption site increases by increasing the adsorbent dose (Malik et al., 2007 and Yener et al., 2006) .
    Figure 6. Effect of mass adsorbent on adsorption (a) GRL, and (b) DY 12 experimental conditions: Temp. 293 K, pH 6, and particle size 75 μm.

    3.3.3 Effect of particle size

    Particle size of an adsorbent played a very important role in the adsorption capacity of dye. The relationship of adsorption capacity to particle size depends on two criteria: (i) the chemical structure of the dye molecule (its ionic charge) and its chemistry (its ability to formhydrolyzed species) and (ii) the intrinsic characteristic of the adsorbent (its crystallinity, porosity and rigidity of the polymericchains) (Iqbal et al., 2011). Fig. 7 shows the effect of particle size on textile dye adsorption.
    Figure 7. Effect of particle size on adsorption (a) GRL, and (b) DY 12 experimental conditions: Temp. 293 K, mass dosage 50 mg/L, and pH 6.
    Fig. 7 shows Minimum particle size showed greater adsorption than larger size. Small size of adsorbent increases the surface area for adsorption. The increase in adsorption capacity with decreasing particle size suggests that the dye preferentially adsorbed on the outer surface and did not fully penetrate the particle due to steric hindrance of large dye molecules (Gouamid et al., 2013, Li et al., 2011 and Rehman et al., 2013).

    3.3.4 Effect of temperature

    The effect of temperature on the adsorption of both dyes (GRL and DY 12) by CSAC was studied within the temperatures (10, 20, 30 and 40 °C) on adsorption at (2–16 mg/L) initial dye concentration, pH 6, results are shown in Fig. 8.
    Figure 8. Effect of temperature on adsorption (a) GRL, and (b) DY 12: experimental conditions: particle size 75 μm, CSAC dosage 50 mg/L, and pH 6.
    It was observed that the adsorption capacity of GRL on CSAC (Fig. 8a) was higher than that of DY 12 (Fig. 8b). This results may be ascribed to the vacant sites on AC used for adsorption were constant, and the molecular weight of GRL was higher than that of DY 12. Meanwhile, with the initial temperatures of dye solution increased from 10 to 40 °C, the adsorption capacities of GRL and DY 12 decreased this may causes an increase in the solubility of the dyes, resulted in a stronger interaction forces between dyes and solvent than those between dyes and CSAC (Dotto et al., 2012, Zhou et al., 2011 and Zhou et al., 2014). A decrease in the adsorption of both dyes GRL and DY 12 with increasing temperature is related to the increasing Brownian movement of molecules in solution (Li et al., 2013). High temperature might also lead to the breaking of existing intermolecular hydrogen bonding between GRL and DY 12 and CSAC, which is an important contribution to the adsorption process (Li et al., 2013).

    3.4 Thermodynamic study

    The thermodynamic behaviors for adsorption of GRL and DY 12 on CSAC were further investigated. The thermodynamic parameters such as Gibbs free energy change (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated using the following equations:
    equation8
    where k0 is the apparent equilibrium constant, R is the gas constant (8.314 J/(molK)), and T is absolute temperatures (K). The apparent enthalpy (ΔH°) of adsorption and entropy (ΔS°) of adsorption were calculated from adsorption data at different temperatures using the Van’t Hoff Eq. (9) as follows:
    equation9
    The values of ln K0 for thermodynamic calculations were obtained from equilibrium constant (Ks) for the adsorption as follows (Li et al., 2010):
    equation10
    where ν1 is the activity coefficient of the adsorbed solute, and ν2 is the activity coefficient of the solute in equilibrium suspension. The ratio of activity coefficients was assumed to be uniform in the dilute range of the solutions. As the concentration of the dye in the solution approached zero, the activity coefficient approached unity Eq. (11)
    equation11
    The values of K0 determined from the intercept (figure not shown), by plotting ln qe/Ceversus Ce and extrapolating to Ce = 0 (Gupta et al., 2004). All the calculated thermodynamic parameters are presented in Table 2.
    Table 2. Thermodynamic functions ΔG, ΔS and, ΔH of GRL and DY 12 adsorbed on the CSAC.
    T/KKeΔG°/kJ mol−1ΔH°/kJ mol−1ΔS°/J.K−1 mol−1
    CSAC adsorbent/GRL adsorbate
    2837.01126−4.58224−3.9662772.110093
    2936.46867−4.54794
    3036.25687−4.6193
    3135.92734−4.63096
    CSAC adsorbent/DY 12 adsorbate
    2839.15672−5.21038−2.1401910.84927
    2938.85693−5.31341
    3038.6671−5.44017
    3138.37077−5.52919
    For the adsorption of both GRL and DY 12 dyes on CSAC, the obtained ΔH values were negative, which indicated the exothermic nature of both dye adsorption onto CSAC. The change in entropy was positive, indicating the entropy of the system increased during the adsorption. However, it should also be noted that the entropy of the universe (including the system and the surroundings) might increase because the adsorption reaction was not an isolated process. The negative values of ΔG° for both dyes demonstrated that the adsorption process on CSAC was a spontaneous process, and the decrease of ΔG° values with the increase of temperature indicated that the adsorption became less favorable at higher temperatures (Zhou et al., 2014).

    3.5 Determination of adsorption isotherm parameters

    The adsorption isotherm can describe the distribution of dye between solid phase and the solution at a certain temperature when the equilibrium was reached. The Langmuir, Freundlich, Temkin and Fritz–Schlunder (F–S) models were applied to fit the equilibrium data. Each isotherm model was expressed by relative certain constants which characterized the surface properties and indicated adsorption capacity of this material.

    3.5.1 Langmuir isotherm

    The Langmuir model proposes that monolayer sorption occurs on the solid surface with identical homogeneous sites (Langmuir, 1918). It also suggests that no further adsorption takes place once the active sites are covered with dye molecules. The saturated monolayer isotherm is presented by the following equation:
    equation12
    where Ce is the concentration of dye at equilibrium in solution (mg/L); qe is unit equilibrium adsorption capacity; qm is the maximum dye uptake, giving the information about adsorption capacity for a complete monolayer (mg/g); and KL is a constant denoted the energy of adsorption and affinity of the binding sites (L/mg).

    3.5.2 Freundlich isotherm

    Freundlich isotherm is an empirical model assuming that the distribution of the heat on the adsorbent surface is nonuniform, namely a heterogeneous adsorption (Freundlich and Heller, 1939). The equation is stated as follows:
    equation13
    where n and KF [mg/g (L/mg)n] are both the Freundlich constants giving an indication of adsorption intensity and capacity, respectively. The degree of non-linearity between solution concentration and adsorption is n dependent as follows: if the value of n is equal to unity, the adsorption is linear; if the value is below to unity, this implies that adsorption process is chemical; if the value is above unity adsorption is a favorable physical process (Kumar et al., 2010).

    3.5.3 Temkin isotherm

    The Temkin model proposes into account the effects of the interaction of the adsorbate and the adsorbing species (Tempkin and Pyzhev, 1940). By ignoring the extremely low and large concentration values, the model assumes that the heat of adsorption (a function of temperature) of all of the molecules in the layer would decrease linearly rather than logarithmically with coverage due to adsorbate–adsorbent interactions (Aharoni and Ungarish, 1977), the equation is stated as follows:
    equation14
    where b Tempkin constant related to the heat of adsorption (kJ/mol), and KT empirical Tempkin constant related to the equilibrium binding constant related to the maximum binding energy (L/mg).

    3.5.4 Fritz–Schlunder (F–S) isotherm

    The F–S model is empirical three-parameter isotherm combining the Langmuir and Freundlich isotherms (Fritz and Schlunder, 1974). It is based on the following equation:
    equation15
    where KFS is the Fritz–Schlunder model constant (L/mg), qm the amount of dye adsorbed (mg/g) when the saturation is attained, and n is the Freundlich constant (Batzias and Sidiras, 2007).
    The coefficients of determination (R2) and isotherm parameters from nonlinear regressive method were listed in Table 3. A comparison of nonlinear fitted curves from experimental data and four different isotherms at 283, 293, 303 and 313 K is shown in Fig. 9.
    Table 3. Parameters for different parameters isotherm models for the adsorption study of GRL, and DY 12 dyes onto CSAC at different temperatures.
    Isotherm modelsParametersGRL dye

    DY 12 dye

    Temperature/K

    Temperature/K

    283293303313283293303313
    Langmuirqm (mg.g−1)51.55973 ± 4.633362.0622 ± 7.326558.2523 ± 5.493158.51038 ± 7.20479.9275 ± 0.611413.7752 ± 1.289610.0211 ± 0.454312.6067 ± 2.6766
    KL(L.mg−1)0.21508 ± 0.03040.12128 ± 0.020080.10311 ± 0.01360.08209 ± 0.01380.1338 ± 0.01700.0496 ± 0.00680.0694 ± 0.00520.0356 ± 0.0103
    R20.99330.994490.996650.995180.989230.995440.997920.9867
    FreundlichKF9.13054 ± 0.52226.92385 ± 0.395915.74431 ± 0.29244.70083 ± 0.32181.5380 ± 0.19360.8089 ± 0.07410.8414 ± 0.07470.5120 ± 0.0762
    1/n0.71021 ± 0.05210.77417 ± 0.045390.77352 ± 0.03630.79674 ± 0.04490.56417 ± 0.057810.7469 ± 0.04030.6824 ± 0.03900.8052 ± 0.0638
    R20.976790.985920.991150.987010.955210.988170.986330.97579
    Tempkinb/J.mole−12.9939 ± 0.28222.44113 ± 0.39102.16876 ± 0.3611.67253 ± 0.22102.2226 ± 0.09602.1375 ± 0.16211.8524 ± 0.10421.7605 ± 0.1172
    KT9.13003 ± 0.50288.50254 ± 0.79207.79026 ± 0.73907.80985 ± 0.62891.2665 ± 0.11380.8337 ± 0.11100.9088 ± 0.09460.6708 ± 0.0718
    R20.979150.942270.940230.956310.987090.961090.978250.96979
    Fritz–Schlunderqm33.6805 ± 1.673540.48221 ± 6.442146.56237 ± 10.804933.70863 ± 3.09987.69475 ± 0.440510.58464 ± 2.20198.02541 ± 0.58166.01633 ± 0.6502
    KFS0.35858 ± 0.02470.1864 ± 0.03210.12808 ± 0.03040.13194 ± 0.01080.12999 ± 0.01040.05699 ± 0.00740.07556 ± 0.00350.04245 ± 0.0050
    m1.33488 ± 0.06151.21833 ± 0.11491.08918 ± 0.10641.28034 ± 0.07441.34307 ± 0.10931.12811 ± 0.12351.14701 ± 0.05861.48367 ± 0.1420
    R20.998920.996240.996490.998560.995890.995540.998910.99565
    Figure 9. Adsorption isotherm models fitted to experimental adsorption of (a) DY 12, and (b) GRL (pH 6, Temp. 298, particle size 75 μm, mass dosage 50 mg/L).
    The Langmuir adsorption model was found to fit the experimental data for both dyes sufficiently in accordance with the liner correlation coefficients (R2). The larger values of R2 (⩾0.9867) indicted the applicability of the Langmuir isotherm for dye adsorption. qm was an important Langmuir constant, representing the maximum capacity at equilibrium. The difference of KL values between CSAC/GRL and CSAC/DY 12 refers to the different in binding strength and capacity of the dyes with the surface of the CSAC, in general values of KL decreased with the rise of temperature.
    The Freundlich model did not provide any information about the saturation adsorption capacity as well as Langmuir model with lower R2 (0.9552). The parameters of KF and 1/n exhibited intense change at higher temperatures. The values of 1/n (0.1 < 1/n < 1) indicated favorable adsorption of both dyes at experimental conditions. The Temkin model provides calculation of equilibrium binding constant corresponding to the maximum binding energy, KT, decreased as the experimental temperature increased from 283 to 313 K, which implies that the adsorption process is exothermic and favored at higher temperatures. Moreover, it was observed from Fig. 9 that the fitted curves from the F–S isotherm were most near to the experimental data at experimental conditions. Hence, the (F–S) model was best to describe adsorption behavior at equilibrium. By comparing the four models, it seems that the model of Fritz–Schlunder is the most adapted for the fitting of adsorption isotherms, then Langmuir model more adapted than Temkin and Fruendlich models. The calculated parameters of fourth models are illustrated in Table 3.

    4 Conclusion

    Coconut shell, a food solid waste, was successfully utilized as a low cost alternative adsorbent for the removal of hazardous textile dyes (GRL and DY 12). The shifting of peaks in FTIR spectrum confirmed the GRL and DY 12 dye adsorption onto CSAC. The SEM study also made support to it by observing difference in surface morphology of adsorbent before and after adsorption of GRL and DY 12. Kinetics adsorption models of both GRL and DY 12 dyes on CSAC were studied and modeled using fourth kinetic models. The classification of the kinetic models according to the simulation of the adsorption study is: Chemisorption > Psuedo-second order > pseudo-first order > Intra-particle-diffuse. Also adsorption isotherms of these dyes on CSAC were studied and modeled using fourth isotherm models with more than two-parameter. An excellent prediction in all the studied concentration ranges can be obtained by the three-parameter equation (Fritz–Schlunder). The classification of the models according to the simulation of the adsorption isotherms is: Fritz–Schlunder > Langmuir > Freundlich > Tempkin. Thermodynamic study demonstrates the spontaneous and exothermic nature of adsorption process due to negative values of both free energy change and enthalpy change.

    Acknowledgments

    The authors acknowledges to Ministry of Higher Education and Scientific Research, Babylon University/College of Sciecne, Department of Chemistry, Iraq.

    References

      • Acharya et al., 2009
      • J. Acharya, J.N. Sahu, B.K. Sahoo, C.R. Mohanty, B.C. Meikap
      • Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride
      • Chem. Eng. J., Volume 150, 2009, pp. 25–39
      • Article
         | 
         PDF (3076 K)
         | 
        View Record in Scopus
        Citing articles (121)
      • Aharoni and Ungarish, 1977
      • C. Aharoni, M. Ungarish
      • Kinetics of activated chemisorption. Part 2. Theoretical models
      • J. Chem. Soc., Faraday Trans., Volume 73, 1977, pp. 456–464
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (188)
      • Ahmad and Rahman, 2011
      • M.A. Ahmad, N.K. Rahman
      • Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon
      • Chem. Eng. J., Volume 170, 2011, pp. 154–161
      • Article
         | 
         PDF (771 K)
         | 
        View Record in Scopus
        Citing articles (70)
      • Al-Degs et al., 2008
      • Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker
      • Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon
      • Dyes Pigments, Volume 77, 2008, pp. 16–23
      • Article
         | 
         PDF (363 K)
         | 
        View Record in Scopus
        Citing articles (421)
      • AlOthman et al., 2013
      • Z.A. AlOthman, M.A. Habila, R. Ali, A. Abdel
      • Ghafar, M.S. El-din Hassouna, Valorization of two waste streams into activated carbon and studying its adsorption kinetics equilibrium isotherms and thermodynamics for methylene blue removal
      • Arabian Journal of Chemistry, Volume 2, 2013, pp. 2–12http://dx.doi.org/10.1016/j.arabjc.2013.05.007
      • Auta and Hameed, 2011
      • M. Auta, B.H. Hameed
      • Optimized waste tea activated carbon for adsorption of methylene blue and acid blue 29 dyes using response surface methodology
      • Chem. Eng. J., Volume 175, 2011, pp. 233–243
      • Article
         | 
         PDF (1222 K)
         | 
        View Record in Scopus
        Citing articles (61)
      • Banerjee and Chattopadhyaya, 2013
      • S. Banerjee, M.C. Chattopadhyaya
      • Adsorption characteristics for the removal of a toxic dye tartrazine from aqueous solutions by a low cost agricultural by-product
      • Arabian Journal of Chemistry, 2013 http://dx.doi.org/10.1016/j.arabjc.2013.06.005
      • Batzias and Sidiras, 2007
      • F.A. Batzias, D.K. Sidiras
      • Simulation of dye adsorption by beech sawdust as affected by pH
      • J. Hazard. Mater., Volume 141, 2007, pp. 668–679
      • Article
         | 
         PDF (413 K)
         | 
        View Record in Scopus
        Citing articles (55)
      • Cazetta et al., 2011
      • A.L. Cazetta, A.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.G. Moraes, V.C. Almeida
      • NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption
      • Chem. Eng. J., Volume 174, 2011, pp. 117–125
      • Article
         | 
         PDF (612 K)
         | 
        View Record in Scopus
        Citing articles (108)
      • Chiou and Chuang, 2006
      • M. Chiou, G. Chuang
      • Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads
      • Chemosphere., Volume 62, 2006, pp. 731–740
      • Article
         | 
         PDF (277 K)
         | 
        View Record in Scopus
        Citing articles (168)
      • Demirbas et al., 2008
      • E. Demirbas, M. Kobya, M.T. Sulak
      • Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon
      • Bioresour. Technol., Volume 99, 2008, pp. 5368–5373
      • Article
         | 
         PDF (142 K)
         | 
        View Record in Scopus
        Citing articles (118)
      • Dotto et al., 2012
      • G.L. Dotto, E.C. Lima, L.A. Pinto
      • Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis
      • Bioresour. Technol., Volume 103, 2012, pp. 123–130
      • Article
         | 
         PDF (620 K)
         | 
        View Record in Scopus
        Citing articles (60)
      • Foo and Hameed, 2012
      • K.Y. Foo, B.H. Hameed
      • Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance
      • Chem. Eng. J., Volume 184, 2012, pp. 57–65
      • Article
         | 
         PDF (731 K)
         | 
        View Record in Scopus
        Citing articles (69)
      • Freundlich and Heller, 1939
      • H. Freundlich, W. Heller
      • The adsorption of cis- and trans-azobenzene
      • J. Am. Chem. Soc., Volume 61, 1939, pp. 2228–2230
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (166)
      • Fritz and Schlunder, 1974
      • W. Fritz, E.U. Schlunder
      • Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon
      • Chem. Eng. Sci., Volume 29, 1974, pp. 1279–1282
      • Article
         | 
         PDF (266 K)
         | 
        View Record in Scopus
        Citing articles (232)
      • Gecgel and Kolancilar, 2012
      • U. Gecgel, H. Kolancilar
      • Adsorption of Remazol brilliant blue R on activated carbon prepared from a pine cone
      • Nat. Prod. Res., Volume 26, 2012, pp. 659–664
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (5)
      • Ghaedi et al., 2012
      • M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran
      • Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon
      • Chem. Eng. J., Volume 187, 2012, pp. 133–141
      • Article
         | 
         PDF (939 K)
         | 
        View Record in Scopus
        Citing articles (80)
      • Ghaedi et al., 2013
      • M. Ghaedi, A. Ansari, R. Sahraei
      • ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of reactive orange 12 and direct yellow 12 adsorption
      • Spectrochim Acta A Mol. Biomol. Spectrosc., Volume 114, 2013, pp. 687–694
      • Article
         | 
         PDF (916 K)
         | 
        View Record in Scopus
        Citing articles (32)
      • Gouamid et al., 2013
      • M. Gouamid, M.R. Ouahrani, M.B. Bensaci
      • Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves
      • Energy Procedia, Volume 36, 2013, pp. 898–907
      • Article
         | 
      •  PDF (474 K)
    |
    View Record in Scopus
    Citing articles (27)

    • Gupta et al., 2004
    • V.K. Gupta, P. Singh, N. Rahman
    • Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin
    • J. Colloid Interf. Sci., Volume 275, 2004, pp. 398–402
    • Article
       | 
    •  PDF (256 K)
    • | 
      View Record in Scopus
      Citing articles (180)
    • Hajati et al., 2014
    • S. Hajati, M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar
    • Competitive adsorption of direct yellow 12 and reactive o12 on ZnS:Mn nanoparticles loaded on activated carbon as novel adsorbent
    • J. Ind. Eng. Chem., Volume 20, 2014, pp. 564–571
    • Article
       | 
    •  PDF (1509 K)
    • | 
      View Record in Scopus
      Citing articles (28)
    • Hameed et al., 2013
    • K.S. Hameed, P. Muthirulan, S.M. Meenakshi
    • Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies
    • Arabian J. Chem, 2013 http://dx.doi.org/10.1016/j.arabjc.2013.07.058
    • Ho and McKay, 1999
    • Y.S. Ho, G. McKay
    • Pseudo-second order model for sorption processes
    • Process Biochem., Volume 34, 1999, pp. 451–465
    • Article
       | 
       PDF (696 K)
       | 
      View Record in Scopus
      Citing articles (5431)
    • Iqbal and Ashiq, 2007
    • M.J. Iqbal, M.N. Ashiq
    • Adsorption of dyes from aqueous solutions on activated charcoal
    • J. Hazard. Mater., Volume 139, 2007, pp. 57–66
    • Article
       | 
       PDF (922 K)
       | 
      View Record in Scopus
      Citing articles (202)
    • Iqbal et al., 2011
    • J. Iqbal, F.H. Wattoo, M.S. Wattoo, R. Malik, S.A. Tirmizi, M. Imran, A.B. Ghangro
    • Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes
    • Arabian J. Chem., Volume 4, 2011, pp. 389–395
    • Article
       | 
    •  PDF (827 K)
    • | 
      View Record in Scopus
      Citing articles (21)
    • Khaled et al., 2009
    • A. Khaled, A. El Nemr, A. Ei-Sikaily, A. Abdelwahab
    • Treatment of artificial textile dye effluent containing direct yellow 12 by orange peel carbon
    • Desalination, Volume 238, 2009, pp. 210–232
    • Article
       | 
    •  PDF (796 K)
    • | 
      View Record in Scopus
      Citing articles (99)
    • Kilic et al., 2011
    • M. Kilic, E. Apaydin-Varol, E.A. Putun
    • Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics
    • J. Hazard. Mater., Volume 189, 2011, pp. 397–403
    • Article
       | 
    •  PDF (548 K)
    • | 
      View Record in Scopus
      Citing articles (98)
    • Kismir and Aroguz, 2011
    • Y. Kismir, A.Z. Aroguz
    • Adsorption characteristics of the hazardous dye brilliant green on Saklikent mud
    • Chem. Eng. J., Volume 172, 2011, pp. 199–206
    • Article
       | 
    •  PDF (691 K)
    • | 
      View Record in Scopus
      Citing articles (45)
    • Konicki et al., 2013
    • W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bielun, U. Narkiewicz
    • Equilibrium and kinetic studies on acid dye acid red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles
    • J. Colloid Interf. Sci., Volume 398, 2013, pp. 152–160
    • Article
       | 
    •  PDF (955 K)
    • | 
      View Record in Scopus
      Citing articles (61)
    • Kumar et al., 2010
    • P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan
    • Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions
    • Desalination, Volume 261, 2010, pp. 52–60
    • View Record in Scopus
      Citing articles (22)
    • Lagergren, 1898
    • S. Lagergren
    • About the theory of so-called adsorption of soluble substances
    • Kungliga Suensk Vetenskapsakademiens Handlingar, Volume 241, 1898, pp. 1–39
    • View Record in Scopus
      Citing articles (55)
    • Langmuir, 1918
    • I. Langmuir
    • Adsorption of gases on plain surfaces of glass mica platinum
    • J. Am. Chem. Soc., Volume 40, 1918, pp. 1361–1403
    • View Record in Scopus
       | 
      CrossRef
      Citing articles (7568)
    • Li et al., 2010
    • Q. Li, Q. Yue, Y. Su, B. Gao, H. Sun
    • Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite
    • Chem. Eng. J., Volume 158, 2010, pp. 489–497
    • Article
       | 
    •  PDF (866 K)
    • | 
      View Record in Scopus
      Citing articles (73)
    • Li et al., 2011
    • W. Li, Q. Yue, P. Tu, Z. Ma, B. Gao, J. Li, X. Xu
    • Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge
    • Chem. Eng. J., Volume 178, 2011, pp. 197–203
    • Article
       | 
    •  PDF (1103 K)
    • | 
      View Record in Scopus
      Citing articles (45)
    • Li et al., 2013
    • H. Li, G. Huang, C. An, J. Hu, S. Yang
    • Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies
    • Ind. Eeg. Chem. Res., Volume 52, 2013, pp. 15923–15931
    • View Record in Scopus
       | 
      CrossRef
      Citing articles (11)
    • Low, 1960
    • M.D. Low
    • Kinetics of chemisorption of gases on solids
    • Chem. Rev., Volume 60, 1960, pp. 267–312
    • View Record in Scopus
       | 
      CrossRef
      Citing articles (376)
    • Malik et al., 2007
    • R. Malik, D.S. Ramteke, S.R. Wate
    • Adsorption of malachite green on groundnut shell waste based powdered activated carbon
    • Waste Manage., Volume 27, 2007, pp. 1129–1138
    • Article
       | 
    •  PDF (201 K)
    • | 
      View Record in Scopus
      Citing articles (151)
    • Namasivayam and Kavitha, 2002
    • C. Namasivayam, D. Kavitha
    • Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste
    • Dyes Pigments, Volume 54, 2002, pp. 47–58
    • Article
       | 
    •  PDF (181 K)
    • | 
      View Record in Scopus
      Citing articles (759)
    • Prahas et al., 2008
    • D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji
    • Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization
    • Chem. Eng. J., Volume 140, 2008, pp. 32–42
    • Article
       | 
    •  PDF (1174 K)
    • | 
      View Record in Scopus
      Citing articles (167)
    • Rehman et al., 2013
    • M.S. Rehman, M. Munir, M. Ashfaq, N. Rashid, M.F. Nazar, M. Danish, J. Han
    • Adsorption of brilliant green dye from aqueous solution onto red clay
    • Chem. Eng. J., Volume 228, 2013, pp. 54–62
    • Article
       | 
    •  PDF (846 K)
    • | 
      View Record in Scopus
      Citing articles (26)
    • Royer et al., 2009
    • B. Royer, N.F. Cardoso, E.C. Lima, J.P. Vaghetti, N.M. Simon, T. Calvete, R.C. Veses
    • Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions: kinetic and equilibrium study
    • J. Hazard. Mater., Volume 164, 2009, pp. 1213–1222
    • Article
       | 
    •  PDF (838 K)
    • | 
      View Record in Scopus
      Citing articles (111)
    • Senthilkumaar et al., 2006
    • S. Senthilkumaar, P. Kalaamani, C.V. Subburaam
    • Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree
    • J. Hazard. Mater., Volume 136, 2006, pp. 800–808
    • Article
       | 
       PDF (531 K)
       | 
      View Record in Scopus
      Citing articles (138)
    • Shi et al., 2013
    • Y. Shi, X. Kong, C. Zhang, Y. Chen, Y. Hua
    • Adsorption of soy isoflavones by activated carbon: kinetics, thermodynamics and influence of soy oligosaccharides
    • Chem. Eng. J., Volume 215–216, 2013, pp. 113–121
    • Article
       | 
       PDF (465 K)
       | 
      View Record in Scopus
      Citing articles (14)
    • Tan et al., 2008
    • I.W. Tan, A.L. Ahmad, B.H. Hameed
    • Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies
    • Desalination, Volume 225, 2008, pp. 13–28
    • Article
       | 
       PDF (390 K)
       | 
      View Record in Scopus
      Citing articles (175)
    • Tempkin and Pyzhev, 1940
    • M.J. Tempkin, V. Pyzhev
    • Kinetics of ammonia synthesis on promoted iron catalysts
    • Acta Physicochim. URSS, Volume 12, 1940, pp. 217–222
    • View Record in Scopus
      Citing articles (1)
    • Thinakaran et al., 2008
    • N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam, S. Sivanesan
    • Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull
    • J. Hazard. Mater., Volume 151, 2008, pp. 316–322
    • Article
       | 
       PDF (618 K)
       | 
      View Record in Scopus
      Citing articles (89)
    • Tsai et al., 2001
    • W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh
    • Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation
    • Chemosphere, Volume 45, 2001, pp. 51–58
    • Article
       | 
       PDF (121 K)
       | 
      View Record in Scopus
      Citing articles (212)
    • Visa et al., 2010
    • M. Visa, C. Bogatu, A. Duta
    • Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash
    • Appl. Surf. Sci., Volume 256, 2010, pp. 5486–5491
    • Article
       | 
       PDF (380 K)
       | 
      View Record in Scopus
      Citing articles (68)
    • Weber and Morris, 1963
    • W.J. Weber, J.C. Morris
    • Kinetics of adsorption on carbon from solutions
    • J. Sanit. Eng. Div., Volume 89, 1963, pp. 31–60
    • View Record in Scopus
      Citing articles (1)
    • Yener et al., 2006
    • J. Yener, T. Kopac, G. Dogu, T. Dogu
    • Adsorption of basic yellow 28 from aqueous solutions with clinoptilolite and amberlite
    • J. Colloid Interf. Sci., Volume 294, 2006, pp. 255–264
    • Article
       | 
       PDF (222 K)
       | 
      View Record in Scopus
      Citing articles (70)
    • Zhou et al., 2011
    • L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang
    • Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles
    • J. Hazard. Mater., Volume 185, 2011, pp. 1045–1052
    • Article
       | 
       PDF (555 K)
       | 
      View Record in Scopus
      Citing articles (98)
    • Zhou et al., 2014
    • Z. Zhou, S. Lin, T. Yue, T. Lee
    • Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles
    • J. Food Eng., Volume 126, 2014, pp. 133–141
    • Article
       | 
       PDF (703 K)
       | 
      View Record in Scopus
      Citing articles (31)

    • Peer review under responsibility of King Saud University.
    • ⁎ 
      Corresponding author. Tel./fax: +964 7801324986.

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S1319610312001470
    at October 12, 2016
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ▼  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ▼  Oct 12 (13)
          • Wetting agent effect on physical properties of new...
          • Carbon Nanostructures Synthesize from Coconut Coir...
          • Utilization of waste coconut coir dust as a source...
          • Semiconductor carbon composite from coir dust and ...
          • Inhibition of mild steel corrosion in acidic mediu...
          • Coconut coir as biosorbent for Cr(VI) removal from...
          • Equilibrium modeling and kinetic studies on the ad...
          • Activated carbon from coconut coirpith as metal ad...
          • Green coconut shells applied as adsorbent for remo...
          • Kinetic and calorimetric study of the adsorption o...
          • Removal of chromium(VI) from water and wastewater ...
          • Kinetics and equilibrium study for the adsorption ...
          • Physico-chemical and chemical properties of some c...
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ►  June (1003)
        • ►  Jun 30 (29)
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.