Published Date
Original Paper
Cite this article as:
Lartigau, J., Coureau, JL., Morel, S. et al. Int J Fract (2015) 192: 71. doi:10.1007/s10704-014-9986-9
Author
Abstract
References
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S0143749608000468
Original Paper
- First Online:
- 30 December 2014
DOI: 10.1007/s10704-014-9986-9
Author
Abstract
Glued-in-rods in timber structures lead to overcome the use of traditional bolted connections, preserve a large part of the original timber and offer aesthetic benefits. Several research programs were achieved to improve the mechanical knowledge of this technique, exhibiting experimentally the influence of materials and the effect of the geometric configuration. From these experimental results, some design rules predicting the axial strength are available, but a common criterion is still lacking. This paper relates to experimental investigations and finite element computations on glued-in rods, with the aim of providing a better knowledge about their mechanical behavior until failure. An experimental campaign is carried out on single glued-in rod connections. The finite element modeling reproduces the experimental configuration: it exhibits significant normal stress (to the interface) at the onset of the bonding, in comparison with shear stress. Within the framework of equivalent linear elastic fracture mechanics, resistance curves in mode I and mode II are established for each specimen. Finally, a mixed mode fracture criterion (I/II) is used to describe the fracture process zone development at the wood-adhesive interface (failure zone). An analytical formulation is then proposed allowing the evaluation of peak load of each specimen, which highlights a new approach for the design of such connections.
Keywords
Glued-in rodsMixed mode fractureEquivalent LEFMCrack closure techniqueR-curveReferences
- AFNOR (1999) Filetages mtriques ISO pour usages gnraux - Slection de dimensions pour la boulonnerie. NF ISO 262
- AFNOR (2005) Eurocode 5: Design of timber structures—Part 1–1 : General–Common rules and rules for buidings. EN 1995-1-1
- Bažant Z (1997) Scaling of quasibrittle fracture: hypotheses of invasive and lacunar fractility, their critique and Weibull connection. Int J Fract 83:41–65CrossRefGoogle Scholar
- Bažant Z (2002) Concrete fracture models: testing and practice. Eng Fract Mech 69:165–205CrossRefGoogle Scholar
- Bažant Z, Kazemi M (1990) Size effect in fracture of ceramic and its use to determine fracture energy and effective process zone. J Am Ceram Soc 73(7):1841–1853CrossRefGoogle Scholar
- Bengtsson C, Johansson CJ (2001) Girod–glued in rods for timber structures. In: Proceedings of the 34th conference of CIB-W18. International council for research and innovation in building and construction—timber structures, Venice, Italy. Paper 34-7-8
- Borri A, Corradi M (2011) Strengthening of timber beams with high strength steel cords. Compos Part B Eng 42:1480–1491CrossRefGoogle Scholar
- Broek D (1991) Elementary engineering fracture mechanics. Kluwer, DordrechtGoogle Scholar
- Broughton JG, Hutchinson AR (2001) Pull-out behavior of steel rods bonded into timber. Mater Struct 34(2):100–109CrossRefGoogle Scholar
- Buchanan AH, Moss PJ (1999) Design of epoxied steel rods in glulam timber. In: Walford GB, Gaunt DJ (eds) Proceedings of Pacific timber engineering conference. Rotorua, New ZealandGoogle Scholar
- Buchholz F, Grebner H, Dreyer K, Krome H (1988) 2D- and 3D-applications of the improved and generalized modified crack closure integral method. In: Computational mechanics ’88
- Caumes P (1987) Rupture d’un matériau anisotrope en conditions polymodales (le bois). Ph.D. thesis, Université de Bordeaux, France
- Coureau JL, Morel S, Dourado N (2013) Cohesive zone model and quasibrittle failure of wood: a new light on the adapted specimen geometries for fracture tests. Eng Fract Mech 109:328–340CrossRefGoogle Scholar
- De Moura MFSF, Oliveira J, Morais J, Xavier J (2010) Mixed-mode I/II wood fracture characterization using the mixed-mode bending test. Eng Fract Mech 77:144–152CrossRefGoogle Scholar
- Dourado N, Morel S, De Moura M, Valentin G, Morais J (2008) Comparison of fracture properties of two wood species through cohesive crack simulations. Compos Part A 39(2):415–427CrossRefGoogle Scholar
- Ferreira L, Bittencourt T, Sousa J, Gettu R (2002) R-curve behavior in notched beam tests of rocks. Eng Fract Mech 69:1845–1852CrossRefGoogle Scholar
- Fett T, Munz D, Geraghty R, White K (2000) Influence of specimen geometry and relative crack size on the R-curve. Eng Fract Mech 66:375–386CrossRefGoogle Scholar
- Franke B, Quenneville P (2014) Analysis of the fracture behavior of Radiata Pine timber and Laminated Veener Lumber. Eng Fract Mech 116:1–12CrossRefGoogle Scholar
- Fruhmann K, Reiterer A, Tschegg E, Stanzl-Tschegg S (2002) Fracture characteristics of wood under mode I, mode II and mode III loading. Philos mag A 82:3289–3298CrossRefGoogle Scholar
- Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 66(11):A17–A27Google Scholar
- Guitard D (1987) Mécanique du matériau bois et composites. Cépaduès
- Gustafsson PJ, Serrano E, Aicher S, Johansson CJ (2001) A strength design equation for glued-in rods. In: International RILEM symposium on joints in timber structures
- Hart-Smith LJ (1973) Adhesive-bonded single-lap joints. Tech. rep. Langley Research Center Hampton, Virginia
- Irabois (1999) Guide professionnel - Assemblages bois: tiges ou goujons collés de grande dimension, Les Cahiers, d’Irabois, vol 11, pp 1–29
- Irwin G (1958) Fracture I. Handb der Phys VI, pp 558–590
- Kossakowski P (2009) Mixed-mode I/II fracture toughness of pine wood. Arch Civ Eng 55(2):199–227Google Scholar
- Lartigau J (2013) Caractérisation du comportement des assemblages par goujons collés dans les structures bois. Ph.D. thesis, Université de Bordeaux
- Lartigau J, Coureau JL, Morel S, Galimard P, Maurin E (2012) Bonded-in rods connections: modeling of mechanical behavior. In: COST action FP1004
- Lawn B (1993) Fracture of brittle solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- Lespine I (2007) Influence de la géométrie des structures sur les propriétés de rupture dans les milieux quasi-fragiles. Ph.D. thesis, Université de Bordeaux, France
- Mall S, Murphy J, Shottafer JE (1983) Criterion for mixed mode fracture in wood. J Eng Mech 109(3):680–690CrossRefGoogle Scholar
- Martín E, Estevéz J, Otero D (2013) Influence of geometric and mechanical parameters on stress states caused by threaded steel rods glued in wood. Eur J Wood Prod 71:259–266CrossRefGoogle Scholar
- Micelli F, Scialpi V, La Tegola A (2005) Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. J Compos Constr 9(4):337–347CrossRefGoogle Scholar
- Morel S (2008) Size effect in quasibrittle fracture: derivation of the size effect law from equivalent LEFM and asymptotic analysis. Int J Fract 154:15–26CrossRefGoogle Scholar
- Morel S, Dourado N (2011) Size effect in quasibrittle failure: analytical model and numerical simulations using cohensive zone model. Int J Solid Struct 48:1403–1412CrossRefGoogle Scholar
- Morel S, Dourado N, Valentin G, Morais J (2005) Wood: a quasibrittle material. R-curve behavior and peak load evaluation. Int J Fract 131:385–400CrossRefGoogle Scholar
- Otero Chans D, Cimadevila JE, Gutiérrez EM (2008) Glued joints in hardwood timber. Int J Adhes Adhes 28(8):457–463CrossRefGoogle Scholar
- Qiu LP, Zhu EC, Van de Kuilen JWG (2014) Modeling crack propagation in wood by extended finite element method. Eur J Wood Prod 72:273–283CrossRefGoogle Scholar
- Raftery GM, Whelan C (2014) Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Constr Build Mater 52:209–220
- Riberholt H (1988) Glued bolts in glulam—proposals for CIB code. In: Proceedings of the 21st conference of CIB-W18. International council for research and innovation in building and construction—Timber structures, Parksville, Vancouver Island, Canada. Paper 21-7-2
- Rybicki E, Kanninen M (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938CrossRefGoogle Scholar
- Serrano E (2001) Glued in rods for timber structures: a 3D model and finite element parameter studies. Int J Adhes Adhes 21:115–127CrossRefGoogle Scholar
- Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, New YorkGoogle Scholar
- Steiger R, Gehri E, Widmann R (2007) Pull-out strength of axially loaded steel rods bonded in glulam parallel to the grain. Mater Struct 40(1):69–78CrossRefGoogle Scholar
- Taupin JL (1980) Restauration à la résine époxyde de planchers et charpentes au monastère de la grande chartreuse. Bulletin d’informations tech 92:34–43
- Vasic S, Smith I (2002) Bridging crack model for fracture of spruce. Eng Fract Mech 69:745–760CrossRefGoogle Scholar
- Xavier J, Morais J, Dourado N, de Moura M (2011) Measurement of mode I and mode II fracture properties of wood-bonded joints. J Adhes Sci Technol 25:2881–2895Google Scholar
- Yoshihara H (2013) Initiation and propagation fracture toughness of solid wood under the mixed-mode I/II condition examined by mixed-mode bending test. Eng Fract Mech 104:1–15CrossRefGoogle Scholar
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S0143749608000468
No comments:
Post a Comment