Blog List

Thursday, 22 December 2016

Published Date
Volume 9, Issue 3pp 942–954

Article
DOI: 10

Cite this article as: 
Porsö, C., Mate, R., Vinterbäck, J. et al. Bioenerg. Res. (2016) 9: 942. doi:10.1007/s12155-016-9746-y

Author
  • Charlotta Porsö
  • Rosta Mate
  • Johan Vinterbäck
  • Per-Anders Hansson
Abstract

By using surplus land for biomass production, Mozambique could produce wood pellets for domestic use or export to the European market to meet increasing demand. This study investigated the time-dependent climate effects and energy balance of production and use of pellets from short rotation coppice eucalyptus cultivated on surplus land in Mozambique. Two end-users of the pellets produced were studied: power production in Mozambique and heat and power production in Sweden. A time-dependent life cycle assessment method was used, expressing climate impact as annual temperature change, which highlights the time aspect inherent in bioenergy systems by including annual greenhouse gas fluxes of both fossil and biogenic origins. The results showed an initial cooling effect of the pellet systems studied due to carbon sequestration in soil and biomass, counteracting the temperature warming effect from greenhouse gas emissions associated with the production system. The temperature cooling effect of carbon sequestration increased most in the beginning of the studied time period, while the temperature warming effect from the production system continued to increase, resulting in a net temperature warming effect over time. Local use of the pellets in Mozambique was shown to have a temperature cooling effect during a longer period (39 years) than their export and use in Sweden (27 years). Compared with fossil fuels such as coal or natural gas, eucalyptus pellets proved to be better from a climate perspective for both end-users studied.

References 

  1. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  2. 2.
    Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H et al (2011) Bioenergy. In: IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  3. 3.
    Lamers P, Junginger M, Hamelinck C, Faaij A (2012) Developments in international solid biofuels trade—an analysis of volumes, policies, and market factors. Renew Sust Energ Rev 16(5):3176–3199. doi:10.1016/j.rser.2012.02.027CrossRefGoogle Scholar
  4. 4.
    Sikkema R, Steiner M, Junginger M, Hiegl W, Hansen MT, Faaij A (2011) The European wood pellet markets: current status and prospects for 2020. Biofuels Bioprod Biorefin 5(3):250–278. doi:10.1002/bbb.277CrossRefGoogle Scholar
  5. 5.
    Schut M, Slingerland M, Locke A (2010) Biofuel developments in Mozambique. Update and analysis of policy, potential and reality. Energy Policy 38(9):5151–5165. doi:10.1016/j.enpol.2010.04.048CrossRefGoogle Scholar
  6. 6.
    Batidzirai B, Smeets E, Faaij A (2012) Harmonising bioenergy resource potential—methodological lessons from review of state of the art bioenergy potential assessments. Renew Sust Energ Rev 16(9):6598–6630. doi:10.1016/j.rser.2012.09.002CrossRefGoogle Scholar
  7. 7.
    Direcção Nacional de Terras e Florestas (National Directorate of Land and Forests) (2009) Strategy for reforestation. Ministry of Agriculture, Mozambique, p 38Google Scholar
  8. 8.
    Chitará S (2003) Instruments for promoting private investments in the Mozambican industry. Direcção Nacional de Floresta e Fauna Bravia, MaputoGoogle Scholar
  9. 9.
    FAO (2010) Global forest resource assessment 2010 country report Mozambique. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  10. 10.
    Batidzirai B, Faaij A, Smeets E (2006) Biomass and bioenergy supply from Mozambique. Energy Sustain Dev 10(1):54–81. doi:10.1016/S0973-0826(08)60507-4CrossRefGoogle Scholar
  11. 11.
    van der Hilst F, Faaij A (2012) Spatiotemporal cost-supply curves for bioenergy production in Mozambique. Biofuels Bioprod Biorefin 6:402–430. doi:10.1002/bbb.1332Google Scholar
  12. 12.
    Ministério de Energia (2012) Mozambique biomass national strategy. Ministry of Energy, MoçambiqueGoogle Scholar
  13. 13.
    Electricidade de Moçambique (2011) Annual statistical report. Electricidade de Moçambique, MaputoGoogle Scholar
  14. 14.
    Agostini A, Giuntoli J, Boulamanti A (2013) Carbon accounting of forest bioenergy. Conclusions and recommendations from a critical literature review. Report no. Report EUR 25354 EN. Publications Office of the European Union, LuxembourgGoogle Scholar
  15. 15.
    Zanchi G, Pena N, Bird N (2012) Is woody bioenergy carbon neutral? A comparative assessment of emissions from combustion of woody bioenergy and fossil fuels. GCB Bioenergy 4(6):761–772. doi:10.1111/j.1757-1707.2011.01149.xCrossRefGoogle Scholar
  16. 16.
    Ericsson N, Porsö C, Ahlgren S, Nordberg Å, Sundberg C, Hansson P-A (2013) Time-dependent climate impact of a bioenergy system—methodology development and application to Swedish conditions. GCB Bioenergy 5(5):580–590. doi:10.1111/gcbb.12031CrossRefGoogle Scholar
  17. 17.
    Levasseur A, Lesage P, Margni M, Deschenes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44(8):3169–3174. doi:10.1021/es9030003CrossRefPubMedGoogle Scholar
  18. 18.
    Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  19. 19.
    Matthews R, Sokka L, Soimakallio S, Mortimer N, Rix J, Schelhaas MJ, Jenkins T, Hogan G, Mackie E, Morris A, Randle T (2014) Review of literature on biogenic carbon and life cycle assessment of forest bioenergy—Final Task 1 report, DG ENER project, ‘Carbon impacts of biomass consumed in the EU’. Forest Research, FarnhamGoogle Scholar
  20. 20.
    Batidzirai B, van der Hilst F, Meerman H, Junginger M, Faaij A (2013) Optimization potential of biomass supply chains with torrefaction technology. Biofuels Bioprod Biorefin 6:402–430. doi:10.1002/bbb.1458Google Scholar
  21. 21.
    Magelli F, Boucher K, Bi HT, Melin S, Bonoli A (2009) An environmental impact assessment of exported wood pellets from Canada to Europe. Biomass Bioenergy 33(3):434–441. doi:10.1016/j.biombioe.2008.08.016CrossRefGoogle Scholar
  22. 22.
    Sikkema R, Junginger M, Pichler W, Hayes S, Faaij A (2010) The international logistics of wood pellets for heating and power production in Europe: costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands. Biofuels Bioprod Biorefin 4(2):132–153. doi:10.1002/bbb.208CrossRefGoogle Scholar
  23. 23.
    Porsö C, Hansson P-A (2014) Time-dependent climate impact of heat production from Swedish willow and poplar pellets—in a life cycle perspective. Biomass Bioenergy 70:287–301. doi:10.1016/j.biombioe.2014.09.004CrossRefGoogle Scholar
  24. 24.
    MAE (2005) Profile of Manica District “Perfil do Distrito de Manica”. Ministry of State Administration - MAE/METIER, MaputoGoogle Scholar
  25. 25.
    SCB (2013) Electricity supply, district heating and supply of natural and gasworks gas 2012. Statistic Sweden, ÖrebroGoogle Scholar
  26. 26.
    IRENA (2012) Mozambique—renewable readiness assessment 2012. International Renewable Energy Agency. p.76. Avalible at: http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=279
  27. 27.
    IEA (2014) Key world energy statistics. OECD/International Energy Agency, ParisGoogle Scholar
  28. 28.
    Tuomi M, Rasinmäki J, Repo A, Vanhala P, Liski J (2011) Soil carbon model Yasso07 graphical user interface. Environ Model Softw 26(11):1358–1362. doi:10.1016/j.envsoft.2011.05.009CrossRefGoogle Scholar
  29. 29.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing supplementary material. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, USAGoogle Scholar
  30. 30.
    Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 5(4):891–907. doi:10.1029/2000GB001375CrossRefGoogle Scholar
  31. 31.
    Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, von Bloh W et al (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825. doi:10.5194/acp-13-2793-2013CrossRefGoogle Scholar
  32. 32.
    Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USGoogle Scholar
  33. 33.
    Djomo SN, El Kasmioui O, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3):181–197CrossRefGoogle Scholar
  34. 34.
    Giuntoli J, Agostini A, Edwards R, Marelli L (2014) Solid and gaseous bioenergy pathways: input values and GHG emissions. Report EUR 26696 EN. Publications Office of the European Union, Luxenburg
  35. 35.
    Sims R, Venturi P (2004) All-year-round harvesting of short rotation coppice eucalyptus compared with the delivered costs of biomass from more conventional short season, harvesting systems. Biomass Bioenergy 26(1):27–37. doi:10.1016/S0961-9534(03)00081-3CrossRefGoogle Scholar
  36. 36.
    IPCC (2006) Good practice guidance for land use, land-use change and forestry. IGES, JapanGoogle Scholar
  37. 37.
    Gabrielle B, Nguyen The N, Maoupu P, Vials E (2013) Life cycle assessment of eucalyptus short rotation coppice for bioenergy production in southern France. GCB Bioenergy 5(1):30–42. doi:10.1111/gcbb.12008CrossRefGoogle Scholar
  38. 38.
    IPCC (2006) IPCC guidelines for national greenhouse gas inventories. IGES, JapanGoogle Scholar
  39. 39.
    Overend RP (1982) The average haul distance and transportation work factors for biomass delivered to a central plant. Biomass 2(1):75–79. doi:10.1016/0144-4565(82)90008-7CrossRefGoogle Scholar
  40. 40.
    Hamelinck C, Suurs R, Faaij A (2005) International bioenergy transport costs and energy balance. Biomass Bioenergy 29(2):114–134. doi:10.1016/j.biombioe.2005.04.002CrossRefGoogle Scholar
  41. 41.
    Thek G, Obernberger I (2004) Wood pellet production costs under Austrian and in comparison to Swedish framework conditions. Biomass Bioenergy 27(6):671–693. doi:10.1016/j.biombioe.2003.07.007CrossRefGoogle Scholar
  42. 42.
    Hagberg L, Särnholm E, Gode J, Ekvall T, Rydberg T (2009) LCA calculations on Swedish wood pellet production chains—according to the Renewable Energy Directive. Report B1873. Swedish Environmental Research Institute, StockholmGoogle Scholar
  43. 43.
    Uppenberg S, Almemark M, Brandel M, Lindfors L-G, Marcus H-O, Stripple H et al (2001) Miljöfaktabok för bränsle, del 2. bakgrundsinformation och teknisk bilaga. Swedish Environmental Research Institute, StockholmGoogle Scholar
  44. 44.
    Williams M, Ryan CM, Rees RM, Sambane E, Fernando J, Grace J (2008) Carbon sequestration and biodiversity of re-growing Miombo woodlands in Mozambique. For Ecol Manag 254(2):145–155. doi:10.1016/j.foreco.2007.07.033CrossRefGoogle Scholar
  45. 45.
    Lemma B, Berggren Kleja D, Olsson M, Nilsson I (2007) Factors controlling soil organic carbon sequestration under exotic tree plantations: a case study using the CO2Fix model in southwestern Ethiopia. For Ecol Manag 252(1-3):124–131. doi:10.1016/j.foreco.2007.06.029CrossRefGoogle Scholar
  46. 46.
    Jourdan C, Silva EV, Goncales JLM, Ranger J, Moireira RM, Laclau JP (2008) Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. For Ecol Manag 256(3):396–404. doi:10.1016/j.foreco.2008.04.034CrossRefGoogle Scholar
  47. 47.
    Ravina da Silva M (2012) Impact of Eucalyptus plantations on pasture land on soil properties and carbon sequestration in Brazil. Master thesis. Department of Soil and Environment, The Swedish University of Agricultural Sciences. Uppsala, Sweden
  48. 48.
    Liski J, Tuomi M, Rasinmäki J (2009) Yasso07 user-interface manual. Finnish Environment Institute, University of Helsinki, Helsinki, Finland and Simosol Oy, Riihimäki, FinlandGoogle Scholar
  49. 49.
    World climate (2014). http://www.worldclimate.com/cgi-bin/grid.pl?gr=S19E033. Accessed 16 March 2015
  50. 50.
    Raich J, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99CrossRefGoogle Scholar
  51. 51.
    Ortiz C (2012) Sinks or source? Uncertainties in large-scale model predictions of forest soil organic carbon dynamics. Dissertation. Swedish University of Agricultural Sciences. Uppsala, Sweden
  52. 52.
    Falcão MP (2008) Charcoal production and use in Mozambique, Malawi, Tanzania, and Zambia: Historical overview, present situation and outlook. The Conference on Charcoal and Communities in Africa, INBAR, Maputo, Mozambique
  53. 53.
    Sitoe A, Salomão A, Wertz-Kanounnikoff S (2012) The context of REDD+ in Mozambique. Causes, actors and institutions. Occasional paper 76. CIFOR, BogorGoogle Scholar
  54. 54.
    IIAM and DNTF (2008) Zoneamento Agrário a Nível Nacional - Relatório do Exercício de validação de resultados de terra disponível para grandes investimentos a nível local (fase 2). Maputo. Mozambique. Available at: http://bioenfapesp.org/gsb/lacaf/index.php/lacaf-cane-i/workshops/send/9-mozambique/13-zoneamento-agrario-a-nivel-nacional-relatorio-do-exercicio-de-validacao-de-resultados-de-terra-disponivel-para-grandes-investimentos-a-nivel-local
  55. 55.
    Overbeek W (2010) The expansion of tree monocultures in Mozambique. Impacts on local peasant communities in the province of Niassa. World Rainforest Movement, Montevideo, Uruguay
  56. 56.
    Sitoe A, Guedes BS, Maússe-Sitoe S (2008) Avaliação dos modelos de maneio comunitário de recursos naturais em Moçambique. Ministério da Agricultura, MaputoGoogle Scholar
  57. 57.
    Ministério de Agricultura (2010) Relatório de trabalho de campo realizado no âmbito do cumprimento das decisões de S. Excia.o Senhor Primeiro Ministro na sua visita à Província do Niassa. Lichinga, Mozambique
  58. 58.
    Uasuf A (2010) Economic and environmental assessment of an international wood pellets supply chain: a case study of wood pellets export from northeast Argentina to Europe. Dissertation. University of Freiburg. Freiburg im Breisgau, Germany
  59. 59.
    van der Broek R, van der Burg T, van Wijk A, Turkenberg W (2000) Electricity generation from eucalyptus and bagasse by sugar mills in Nicaragua: a comparison with fuel oil electricity generation on the basis of costs, macro-economic impacts and environmental emissions. Biomass Bioenergy 19(5):311–335. doi:10.1016/S0961-9534(00)00034-9CrossRefGoogle Scholar
  60. 60.
    Fath H (2001) Commercial timber harvesting in the natural forests of Mozambique. FAO, RomeGoogle Scholar
  61. 61.
    Jonker JGG, Junginger M, Faaij M (2014) Carbon payback period and carbon offset parity point of wood pellet production in the south-eastern United States. GCB Bioenergy 6(4):371–389. doi:10.1111/gcbb.12056CrossRefGoogle Scholar
  62. 62.
    Uasuf A, Becker G (2011) Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy 35:1357–1366CrossRefGoogle Scholar
  63. 63.
    Brander M, Sood A, Wylie C, Haughton A, Lovell J. Technical paper—electricity-specific emission factors for grid electricity. Econometrica. Available at: http://ecometrica-cms-media.s3.amazonaws.com/assets/media/pdf/electricity_factors_paper.pdf
  64. 64.
    Gode J, Martinsson F, Hagberg L, Öman A, Höglund J, Palm D (2011) Miljöfaktabok 2011—estimated emission factors for fuels, electricity, heat and transport in Sweden. Värmeforsk, StockholmGoogle Scholar
  65. 65.
    Reed DD, Jones EA, Tomé M, Araújo MC (2003) Models of potential height and diameter for Eucalyptus globulus in Portugal. For Ecol Manag 172(2-3):191–198. doi:10.1016/S0378-1127(01)00802-7CrossRefGoogle Scholar
  66. 66.
    Zewdie M, Olsson M, Verwijst T (2009) Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenergy 33(3):421–428. doi:10.1016/j.biombioe.2008.08.007CrossRefGoogle Scholar
  67. 67.
    Saint-André L, Tongo M’Bou A, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of Eucalyptus in Congo. For Ecol Manag 205(1-3):199–214. doi:10.1016/j.foreco.2004.10.006CrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007%2Fs12155-016-9746-y

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...