Blog List

Friday 9 December 2016

Simulation Models as Tools for Crop Management

Author

Herman van Keulen 

Abstract

Agricultural production can be defined as the transformation of sun energy in useful organic material in the form of food, feed, and fiber. The transformation requires in principle only limited resources: a piece of land, some seeds from a wanted plant species, some sun and rain, and some human labor. However, the transformation takes place under erratic and unpredictable conditions, as especially the availability and timing of the sun and the rain are extremely difficult, if not impossible to predict, while their effects are modified by the qualities of the land and the interventions of the farmer. Any methodology that would improve the predictability of the availability of the resources and their impact on the performance of the production system could in principle improve that performance and reduce the level of uncertainty. Crop growth simulation models ...
This is an excerpt from the content

References

  1. 1.
    Lentz W (1998) Model applications in horticulture: a review. Sci Hortic 74:151–174CrossRef
  2. 2.
    Van Keulen H (1987) Forecasting and estimating effects of weather on yield. In: Wisiol K, Hesketh D (eds) Plant growth modeling for resource management. CRC Press, Boca Raton, pp 105–124
  3. 3.
    Brouwer R, De Wit CT (1968) A simulation model of plant growth, with special attention to root growth and its consequences. In: Whittington WJ (ed) Root growth. Butterworths, London, pp 224–244
  4. 4.
    De Wit CT (1970) Dynamic concepts in biology. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proceedings of IBP/PP Technical Meeting, Trebon, Pudoc, Wageningen, The Netherlands, pp 17–23
  5. 5.
    De Wit CT, Brouwer R, Penning de Vries FWT (1970) The simulation of photosynthetic systems. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proceedings of IBP/PP Technical Meeting, Trebon, Pudoc, Wageningen, The Netherlands, pp 47–70
  6. 6.
    Sinclair TR, Seligman NG (1996) Crop modelling: from infancy to maturity. Agron J 88:698–703CrossRef
  7. 7.
    Bouman BAM, Van Keulen H, Van Laar HH, Rabbinge R (1996) The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agr Syst 52:171–198CrossRef
  8. 8.
    Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crop models. Agron J 88:704–716CrossRef
  9. 9.
    Van Ittersum MK, Leffelaar PA, Van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234CrossRef
  10. 10.
    Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling-from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18:15–31CrossRef
  11. 11.
    Rabbinge R, Goudriaan J, Van Keulen H, de Vries Penning FWT, Van Laar HH (eds) (1990) Theoretical production ecology: reflection and prospects. Simulation Monographs. Pudoc, Wageningen, The Netherlands
  12. 12.
    Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli AE, Van der Wal T, Wien JE, Wolf J (2007) Integrated assessment of agricultural systems – a component-based framework for the European Union (SEAMLESS). Agr Syst 96:150–165CrossRef
  13. 13.
    Seligman NG (1990) The crop model record: promise or poor show? In: Rabbinge R, Goudriaan J, Van Keulen H, Penning de Vries FWT, Van Laar HH (eds) Theoretical production ecology: reflection and prospects. Simulation Monographs. Pudoc, Wageningen, The Netherlands, pp 249–263
  14. 14.
    Cox P (1996) Some issues in the design of agricultural decision support systems. Agr Syst 52:355–381CrossRef
  15. 15.
    Meinke H, Baethgen WE, Carberry PS, Donatelli M, Hammer GL, Selvaraju R, Stőckle CO (2001) Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agr Syst 70:493–513CrossRef
  16. 16.
    Nelson RA, Holzworth DP, Hammer GL, Hayman PT (2003) Infusing the use of seasonal climate forecasting into crop management in North East Australia using discussion support software. Agr Syst 74:393–414CrossRef
  17. 17.
    McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agr Syst 50:255–271CrossRef
  18. 18.
    Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown D, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming analysis simulation. Eur J Agron 18:267–288CrossRef
  19. 19.
    Stöckle CO, Donatelli M (1997) The CropSyst model: a brief description. In: Plentinger MC, Penning de Vries FWT (eds) Rotation models for ecological farming, pp 35–43 (Quantitative Approaches in Systems Analysis No. 10, AB-DLO). Wageningen, The Netherlands
  20. 20.
    Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307CrossRef
  21. 21.
    Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche YM, Cellier P, Debaeke P, Gaudillère JP, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332CrossRef
  22. 22.
    Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt WA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265CrossRef
  23. 23.
    Van Keulen H, Stol W (1995) Agro-ecological zonation for potato production. In: Haverkort AJ, MacKerron DKL (eds) Potato ecology and modelling of crops under conditions limiting growth. Kluwer, Dordrecht, The Netherlands, pp 357–371CrossRef
  24. 24.
    Penning de Vries FWT, Van Keulen H, Rabbinge R (1995) Natural resources and limits of food production in 2040. In: Bouma J, Kuyvenhoven A, Bouman BAM, Luyten J, Zandstra HG (eds) Eco-regional approaches for sustainable land use and food production. Kluwer, Dordrecht, The Netherlands, pp 65–87
  25. 25.
    Van Ittersum MK, Rabbinge R (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Res 52:197–208CrossRef
  26. 26.
    Hengsdijk H, Van Ittersum MK (2002) A goal-oriented approach to identify and engineer land use systems. Agr Syst 71:231–247CrossRef
  27. 27.
    Rabbinge R, Van Latesteijn HC (1992) Long term options for land use in the European Community. Agr Syst 40:195–210CrossRef
  28. 28.
    Ten Berge HFM, Van Ittersum MK, Rossing WAH, Van de Ven GWJ, Schans J, Van de Sanden PACM (2000) Farming options for the Netherlands explored by multi-objective modelling. Eur J Agron 13:263–277CrossRef
  29. 29.
    Roetter R, Van Keulen H, Van Laar HH (2000) Synthesis of methodology development and case studies, vol 3, Sysnet Research Paper Series. International Rice Research Institute, Los Banos, Philippines, p 94
  30. 30.
    Dogliotti S, Rossing WAH, Van Ittersum MK (2004) Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agr Syst 80:277–302CrossRef
  31. 31.
    Dogliotti S, Van Ittersum MK, Rossing WAH (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay. Agr Syst 86:29–51CrossRef
  32. 32.
    Van de Ven GWJ, Van Keulen H (2007) A mathematical approach to comparing environmental and economic goals in dairy farming: identifying strategic development options. Agr Syst 94:231–246CrossRef
  33. 33.
    Hengsdijk H, Bouman BAM, Nieuwenhuyse A, Jansen HGP (1999) Quantification of land use systems using technical coefficient generators: a case study for the northern Atlantic zone of Costa Rica. Agr Syst 61:109–121CrossRef
  34. 34.
    Laborte AG, Schipper RA, Van Ittersum MK, Van Den Berg MM, Van Keulen H, Prins AG, Hossain M (2009) Farmers’ welfare, food production and the environment: a model-based assessment of the effects of new technologies in the northern Philippines. NJAS Wageningen J Life Sci 6:345–373CrossRef
  35. 35.
    Hengsdijk H, Guanghuo W, Van den Berg MM, Jiangdi W, Wolf J, Changhe L, Roetter RR, Van Keulen H (2007) Poverty and biodiversity trade-offs in rural development: a case study for Pujiang county, China. Agr Syst 94:851–861CrossRef
  36. 36.
    Ponsioen TC, Hengsdijk H, Wolf J, Van Ittersum MK, Rötter RP, Son TT, Laborte AG (2006) TechnoGIN, a tool for exploring and evaluating resource use efficiemcy of cropping systems in East and Southeast Asia. Agr Syst 87:80–100CrossRef
  37. 37.
    Abrecht DG, Robinson SD (1996) TACT: a tactical decision aid using a CERES based wheat simulation model. Ecol Model 86:241–244CrossRef
  38. 38.
    Stone RC, Meinke H (2005) Operational seasonal forecasting of crop performance. Philos Trans Roy Soc B 360:2109–2124CrossRef
  39. 39.
    Muchow RC, Bellamy JA (eds) (1991) Climatic risk in crop production: models and management for the semiarid tropics and subtropics. CAB International, Wallingford, UK, p 548
  40. 40.
    Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384:252–255CrossRef
  41. 41.
    Hammer GL, Nicholls N, Mitchell C (eds) (2000) Applications of seasonal climate forecasting in agricultural and natural ecosystems – the Australian experience. Kluwer, Dordrecht, The Netherlands, p 469
  42. 42.
    Carberry PS (2001) Are science rigour and industry relevance both achievable in participatory action research? Proceedings Australian Agronomy Conference, Hobart, January 2001. Available from http://​www.​regional.​org.​au/​papers/​agronomy/​2001/​plenery/​5/​Carberry,Peter.​htm
  43. 43.
    Nelson RA, Hammer GL, Holzworth DP, McLean G, Pinington GK, Frederiks AN (1999) User’s Guide for Whopper Cropper (CD-ROM) Version 2.1. QZ99013. Department of Primary Industries, Queensland, Brisbane, Australia
  44. 44.
    Hammer GL (2000) Applying seasonal climate forecasts in agricultural and natural ecosystems – a synthesis. In: Hammer GL, Nicholls N, Mitchell C (eds) Applications of seasonal climate forecasting in agricultural and natural ecosystems – the Australian experience. Kluwer, Dordrecht, The Netherlands, pp 453–462CrossRef
  45. 45.
    Messina CD, Hansen JW, Hall AJ (1999) Land allocation conditioned on El Niño-Southern Oscillation phases in the Pampas of Argentina. Agr Syst 60:197–212CrossRef
  46. 46.
    Hansen JW, Indeje M (2004) Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agr Forest Meteorol 125:143–157CrossRef
  47. 47.
    Wopereis MCS, Bouman BAM, Tuong TP, Ten Berge HFM, Kropff MJ (1996) ORYZA_W: Rice growth model for irrigated and rainfed environments. SARP Research Proceedings, AB-DLO, Wageningen, The Netherlands, p 159
  48. 48.
    Lansigan FP, Pandey S, Bouman BAM (1997) Combining crop modelling with economic risk-analysis for the evaluation of crop management strategies. Field Crops Res 51:133–145CrossRef
  49. 49.
    MacRobert JF, Savage MJ (1998) The use of a crop simulation model for planning wheat irrigation in Zimbabwe. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Systems approaches for sustainable agricultural development. Kluwer, Dordrecht, The Netherlands, pp 205–220
  50. 50.
    Ko J, Piccinni G, Steglich E (2009) Using EPIC model to manage irrigated cotton and maize. Agr Water Manage 96:1323–1331CrossRef
  51. 51.
    Richards QD, Bange MP, Johnston SB (2008) HydroLOGIC: an irrigation management system for Australian cotton. Agr Syst 98:40–49CrossRef
  52. 52.
    Hearn AB (1994) OZCOT: a simulation model for cotton crop management. Agr Syst 44:257–299CrossRef
  53. 53.
    Ten Berge HFM, Shi Q, Zheng Z, Rao KS, Riethoven JJM, Zhong X (1997) Numerical optimisation of nitrogen application to rice. II. Field evaluations. Field Crops Res 51:43–54CrossRef
  54. 54.
    Ten Berge HFM, Thiyagarajan TM, Shi Q, Wopereis MCS, Drenth H, Jansen MJW (1997) Numerical optimisation of nitrogen application to rice. I. Description of MANAGE-N. Field Crops Res 51:29–42CrossRef
  55. 55.
    Thiyagarajan TM, Stalin P, Dobermann A, Cassman KG, Ten Berge HFM (1997) Soil N supply and plant N uptake by irrigated rice in Tamil Nadu. Field Crops Res 51:55–64CrossRef
  56. 56.
    ZhiMing Z, LiJiao Y, ZhaoQian W, Zheng Z, Yan L, Wang Z (1997) Evaluation of a model recommended for N fertilizer application in irrigated rice. Chin Rice Res Newslett 5:7–8
  57. 57.
    Wang E, Xu JH, Smith CJ (2008) Value of historical climate knowledge, SOI-based seasonal climate forecasting and stored soil moisture at sowing in crop nitrogen management in south eastern Australia. Agr Forest Meteorol 148:1743–1753CrossRef
  58. 58.
    Aggarwal PK, Kalra N, Chander S, Pathak H (2006) InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agr Syst 89:1–25CrossRef
  59. 59.
    Yadav DS, Chander S (2009) Simulation of rice planthopper damage for developing pest management decision support tools. Crop Prot 29:67–76
  60. 60.
    Fischer A, Kergoat L, Dedieu G (1997) Coupling satellite data with vegetation functional models: review of different approaches and perspectives suggested by the assimilation strategy. Remote Sens Rev 15:283–303CrossRef
  61. 61.
    Moulin S, Bondeau A, Delecolle R (1998) Combining agricultural crop models and satellite observations: from field to regional scales. Int J Remote Sens 19:1021–1036CrossRef
  62. 62.
    Jongschaap REE, Quiroz RA (2000) Integrating remote sensing with process-based simulation models to assess primary production capacity for grazing lands in The Andes. Proceedings of the 5th seminar on GIS and developing countries: GISDECO 2000, Los Baños, Philippines, 2–3 November 2000
  63. 63.
    Clevers JPGW, Vonder OW, Jongschaap REE, Desprats DF, King C, Prévot L, Bruguier N (2002) Using SPOT data for calibrating a wheat growth model under Mediterranean conditions. Agronomie 22:687–694CrossRef
  64. 64.
    Cabelguenne M (1996) Tactical irrigation management using real time EPIC-phase model and weather forecast: experiment on maize. In: ICD-CIID F (ed) Irrigation scheduling from theory to practice (Water Reports). FAO, Rome, Italy, pp 185–193
  65. 65.
    Doorenbos J, Kassam AH (1979) Yield response to water. Irrigation and Drainage Paper No. 33, Food and Agricultural Organisation, Rome, Italy
  66. 66.
    Jones CA, Kiniry JR (1986) CERES-Maize: a simulation model of maize growth and development. Texas A&M University Press, College Station, TX, USA
  67. 67.
    Williams JR, Jones CA, Dyke PT (1984) A modelling approach to determining the relationship between erosion and soil productivity. Trans Am Soc Eng 27:129–144
  68. 68.
    Cabelguenne M, Debaeke Ph, Puech J, Bose N (I997) Real time irrigation management using the EPIC-PHASE model and weather forecasts. Agr Water Manage 32:227–238
  69. 69.
    McGlinchey MG, Inman-Bamber N, Culverwell TL, Els M (1995) An irrigation scheduling method based on a crop model and an automatic weather station. Proceedings of the Annual congress of the South African Sugar Technologists’ Association, vol 69, pp 69–73
  70. 70.
    Plauborg F, Heidmann T (1996) MARKVAND: an irrigation scheduling system for use under limited irrigation capacity in a temperate humid climate. In: ICD-CIID F (ed) Irrigation scheduling from theory to practice (Water Reports). FAO, Rome, pp 177–184
  71. 71.
    Hess TM (1990) Practical experiences of operating a farm irrigation scheduling service in England. Acta Hortic 278:871–878
  72. 72.
    Hess TM (1996) A microcomputer scheduling program for supplementary irrigation. Comput Electron Agr 15:233–243CrossRef
  73. 73.
    Tollefson L (1996) Requirements for improved interactive communication between researchers, managers, extensionists and farmers. In: ICD-CIID F (ed) Irrigation scheduling from theory to practice (Water Reports). FAO, Rome, pp 217–226
  74. 74.
    Ines AVM, Honda K, Das Gupta A, Droogers P, Clemente RS (2006) Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agr Water Manage 83:221–232CrossRef
  75. 75.
    Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212–213:198–212CrossRef
  76. 76.
    Hansen JW, Ines AVM (2005) Stochastic disaggregation of monthly rainfall data for crop simulation studies. Agr Forest Meteorol 131:233–246CrossRef
  77. 77.
    Groot JJR, Van Keulen H (1990) Prospects for improvement of nitrogen fertilizer recommendations for cereals: a simulation study. In: Van Beusichem ML (ed) Plant nutrition: physiology and applications. Developments in Plant and Soil Sciences, vol 41. Kluwer, Dordrecht, The Netherlands, pp 685–692
  78. 78.
    Li FY, Johnstone PR, Pearson A, Fletcher A, Jamieson PD, Brown HE, Zyskowskia RF (2009) AmaizeN: a decision support system for optimizing nitrogen management of maize. NJAS Wageningen J Life Sci 57:93–100CrossRef
  79. 79.
    Zadoks JC (1981) EPIPRE: a disease and pest management system for winter wheat developed in The Netherlands. EPPO Bull 11:365–369CrossRef
  80. 80.
    Rabbinge R, Rijsdijk FH (1983) EPIPRE: a disease and pest management system for winter wheat, taking account of micrometeorological factors. EPPO Bull 13:297–305CrossRef
  81. 81.
    Smeets E, Vandenriessche H, Hendrickx G, De Wijngaert K, Geypens M (1992) Photosanitary balance of winter wheat in 1992 by the EPIPRE advice system. Parasitica 48:139–148
  82. 82.
    Djurle J (1988) Experience and results from the use of EPIPRE in Sweden. SROP Bulletin. In: Pest and disease models in forecasting crop loss appraisal and decision supported crop protection systems, vol 11, pp 94–95
  83. 83.
    Forrer HR (1988) Experience and current status of EPIPRE in Switzerland. SROP Bulletin. In: Pest and disease models in forecasting crop loss appraisal and decision supported crop protection systems, vol 11, pp 91–93
  84. 84.
    Macadam R, Britton I, Russell D, Potts W, Baillie B, Shaw A (1990) The use of soft systems methodology to improve the adoption by Australian cotton growers of the Siratac computer-based crop management system. Agr Syst 34:1–14CrossRef
  85. 85.
    Hamilton WD, Woodruff DR, Jamieson AM (1991) Role of computer-based decision aids in farm decision-making and in agricultural extension. In: Muchow RD, Bellamy JA (eds) Climatic risk in crop production-models and management for the semi-arid tropics and subtropics. CAB International, Wallingford, UK, pp 411–423
  86. 86.
    Roetter RP, Hoanh CT, Laborte AG, Van Keulen H, Van Ittersum MK, Dreiser C, Van Diepen CA, De Ridder N, Van Laar HH (2005) Integration of Systems Network (SysNet) tools for regional land use scenario analysis in Asia. Environ Model Softw 20:291–307CrossRef
  87. 87.
    Roetter RP, Laborte AG, Van Keulen H (2000) Using SysNet tools to quantify the trade-off between food production and environmental quality. International Rice Research Newsletter, December 2000:4–9
  88. 88.
    Van Ittersum MK, Roetter RP, Van Keulen H, De Ridder N, Hoanh CT, Laborte AG, Aggarwal PK, Ismail AB, Tawang A (2004) A systems network (SysNet) approach for interactively evaluating strategic land use options at sub-national scale in South and South-east Asia. Land Use Policy 21:101–113CrossRef
  89. 89.
    Van Keulen H (2007) Quantitative analyses of natural resource management options at different scales. Agr Syst 94:768–783CrossRef
  90. 90.
    Van Paassen A, Roetter RP, Van Keulen H, Hoanh CT (2007) Can computer models stimulate learning about sustainable land use? Experience with LUPAS in the humid (sub-) tropics of Asia. Agr Syst 94:874–887CrossRef
  91. 91.
    Sterk B, Carberry P, Leeuwis C, Van Ittersum MK, Howden M, Meinke H, Van Keulen H, Rossingh WAH (2009) The interface between land use systems research and policy: multiple arrangements and leverages. Land Use Policy 26:434–442CrossRef
  92. 92.
    David A (2001) Models implementation: a state of the art. Eur J Oper Res 134:459–480CrossRef
  93. 93.
    Rykiel EJ Jr, Berkson J, Brown VA, Krewitt W, Peters I, Schwartz M, Shogren J, Van der Molen D, Blok R, Borsuk M, Bruins R, Cover K, Dale V, Dew J, Etnier C, Fanning L, Felix R, Nordin Hasan M, Hong H, King AW, Krauchi N, Lubinsky K, Olson J, Onigkeit J, Patterson G, Rajan KS, Reichert P, Sharma K, Smith V, Sonnenschein M, St-Louis R, Stuart D, Supalla R, Van Latesteijn H (2002) Science and decision making. In: Costanza R, Jörgensen SE (eds) Understanding and solving environmental problems in the 21st century. Toward a new, integrated hard problem science. Elsevier, Amsterdam, The Netherlands, pp 153–166CrossRef
  94. 94.
    Walker DH (2002) Decision support, learning and rural resource management. Agr Syst 73:113–127CrossRef
  95. 95.
    Carberry PS, Hochman Z, McCown RL, Dalgliesh NP, Foale MA, Poulton PL, Hargreaves JNG, Hargreaves DMG, Cawthray S, Hillcoat N, Robertson MJ (2002) The FARMSCAPE approach to decision support: farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agr Syst 74:141–177CrossRef
  96. 96.
    Hargreaves DMG, Hochman Z, Dalgliesh N, Poulton P (2001) FARMSCAPE online – developing a method for interactive Internet support for farmers situated learning and planning. In: Proceedings of the Tenth Australian Agronomy Conference, Hobart, Australia. www.​regional.​org.​au/​au/​asa/​2001/​5/​a/​hargreaves.​htm)
  97. 97.
    McCown RL (2002) Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agr Syst 74:179–220CrossRef
  98. 98.
    Twomlow S (2001) Linking Logics II: taking simulation models to the farmers. British Society of Soil Science Newsletter, December 2001 (40):12–14
  99. 99.
    Carberry PS, Hochman Z, Hunt JR, Dalgliesh NP, McCown RL, Whish PM, Robertson MJ, Foale MA, Poulton MA, van Rees H (2009) Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop Pasture Sci 60:1044–1056CrossRef
  100. 100.
    Dalgliesh NP, Foale MA, McCown RL (2009) Re-inventing model-based decision support with Australian dryland farmers. 2. Pragmatic provision of soil information for paddock-specific simulation and farmer decision making. Crop Pasture Sci 60:1031–1043CrossRef
  101. 101.
    McCown RL, Carberry PS, Hochman Z, Dalgliesh NP, Foale MA (2009) Re-inventing model-based decision support with Australian dryland farmers. 1. Changing intervention concepts during 17 years of action research. Crop Pasture Sci 60:1017–1030CrossRef
  1. European Journal of Agronomy (2003) Volume 18, Issues 3–4, special issue Modelling Cropping Systems: Science, Software and Applications. pp 187–393
  2. Gary C, Heuvelink E (1998) Advances and bottlenecks in modelling crop growth: summary of a group discussion. Acta Hortic (ISHS) 456:101–104
  3. Goudriaan J, Van Laar HH (1994) Modelling potential crop growth processes, textbook with exercises. Current Issues in Production Ecology, vol 2. Kluwer, Dordrecht, The Netherlands, p 238
  4. Jongschaap REE (2006) Integrating crop growth simulation and remote sensing to improve resource use efficiency in farming systems. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands
  5. Leffelaar PA (ed) (1993) On system analysis and simulation of ecological processes, with examples in CSMP and FORTRAN. Current Issues in Production Ecology, vol 1. Kluwer, Dordrecht, The Netherlands, p 294
  6. Matthews RB, Stephens W (2002) Crop-soil simulation models: applications in developing countries. CAB International, Wallingford, UKCrossRef
  7. Roetter RP, Van Keulen H, Kuiper M, Verhagen J, Van Laar HH (eds) (2007) Science for agriculture and rural development in low-income countries. Springer, Dordrecht, The Netherlands, p 222
  8. Willocquet L, Savary S, Fernandez L, Elazegui FA, Castilla N, Zhu D, Tang Q, Huang S, Lin X, Singh HM, Srivastava KA (2002) Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia. Ecol Model 153:247–268CrossRef
  9. Wolf J, Van Ittersum MK (2009) Crop models: main developments, their use in CGMS and integrated modeling. Agro-Informatica 22:15–18

For further details log on website :
http://link.springer.com/referenceworkentry/10.1007/978-1-4419-0851-3_300

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...