Author
For further details log on website :
https://pdfs.semanticscholar.org/30bf/2661f0aa0a2263f5b71a3ef609d7dcd9fe55.pdf
Khandkar- Siddikur Rahman1, Md Nazrul Islam1*, Md Mushfiqur Rahman1, Md Obaidullah Hannan1,
Rudi Dungani2,3 and HPS Abdul Khalil3
Abstract
This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm2, respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.
Keywords: Hot pressing; Recycling; Plastic wastes; Modulus of rupture; Modulus of elasticity
This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm2, respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.
Keywords: Hot pressing; Recycling; Plastic wastes; Modulus of rupture; Modulus of elasticity
Introduction
Wood plastic composites (WPCs) are relatively new generation of composite materials and also the most promising sector in the field of both composite and plastic industries. In 1970s, the modern concept of WPC was developed in Italy and gradually got popu- larity in the other part of the world (Pritchard 2004). Wood in the form of flour/particles/fibers are combined with the thermoplastic materials under specific heat and pressure for producing WPCS where additives are added for improving the quality. Many researchers have been worked on WPCs by flat-pressed method at vari- ous wood-plastic ratio (Chen et al. 2006; Najafi et al. 2007; Lee et al. 2010; Ayrilmis et al. 2011; Ayrilmis and Jarusombuti 2011; Jarusombuti and Ayrilmis 2011) which typically ranges between 50 to 80% of SD or fibre either as filler or reinforcements (Clemons 2002). The higher strength and aspect ratio of natural fibres offers good reinforcing potential in composite matrix compared to the artificial fibres (Abdul Khalil et al. 2014; Clemons 2008).
Virgin plastics include high and low density polye- thylene (HDPE and LDPE respectively), polypropylene (PP), polystyrene (PS) and poly vinyl chloride (PVC) which are commonly used for the production of WPCs (Najafi et al. 2007). Recycled plastics can also consider for manufacturing of WPCs depending on their melting temperature (Stark et al. 2010). Additives can also be added to improve the quality of the composites by eliminating the off-putting properties. However, the utilization of recycled plastic in WPC manufacturing is still limited, and a major portion of global municipal solid waste includes post consumer plastic materials like HDPE, LDPE, PVC, and PET which have the potentiality for being used in the WPCs (Chaharmahali et al. 2008). These post consumer plastics also pose a serious threat to the environment unless they are recycled.
* Correspondence: nazrul17@yahoo.com
1Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
Full list of author information is available at the end of the article
Wood plastic composites (WPCs) are relatively new generation of composite materials and also the most promising sector in the field of both composite and plastic industries. In 1970s, the modern concept of WPC was developed in Italy and gradually got popu- larity in the other part of the world (Pritchard 2004). Wood in the form of flour/particles/fibers are combined with the thermoplastic materials under specific heat and pressure for producing WPCS where additives are added for improving the quality. Many researchers have been worked on WPCs by flat-pressed method at vari- ous wood-plastic ratio (Chen et al. 2006; Najafi et al. 2007; Lee et al. 2010; Ayrilmis et al. 2011; Ayrilmis and Jarusombuti 2011; Jarusombuti and Ayrilmis 2011) which typically ranges between 50 to 80% of SD or fibre either as filler or reinforcements (Clemons 2002). The higher strength and aspect ratio of natural fibres offers good reinforcing potential in composite matrix compared to the artificial fibres (Abdul Khalil et al. 2014; Clemons 2008).
Virgin plastics include high and low density polye- thylene (HDPE and LDPE respectively), polypropylene (PP), polystyrene (PS) and poly vinyl chloride (PVC) which are commonly used for the production of WPCs (Najafi et al. 2007). Recycled plastics can also consider for manufacturing of WPCs depending on their melting temperature (Stark et al. 2010). Additives can also be added to improve the quality of the composites by eliminating the off-putting properties. However, the utilization of recycled plastic in WPC manufacturing is still limited, and a major portion of global municipal solid waste includes post consumer plastic materials like HDPE, LDPE, PVC, and PET which have the potentiality for being used in the WPCs (Chaharmahali et al. 2008). These post consumer plastics also pose a serious threat to the environment unless they are recycled.
* Correspondence: nazrul17@yahoo.com
1Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
Full list of author information is available at the end of the article
For further details log on website :
https://pdfs.semanticscholar.org/30bf/2661f0aa0a2263f5b71a3ef609d7dcd9fe55.pdf
No comments:
Post a Comment