Author
For further details log on website :
http://econpapers.repec.org/article/sprmasfgc/v_3a22_3ay_3a2017_3ai_3a2_3ad_3a10.1007_5fs11027-014-9560-9.htm
George Nyamadzawo (gnyama@yahoo.com), Yeufeng Shi, Ngonidzashe Chirinda, Jørgen E. Olesen, Farai Mapanda, Menas Wuta, Wenliang Wu, Fanqiao Meng, Myles Oelofse, Andreas Neergaard and Jeff Smith
Additional contact information
Additional contact information
Mitigation and Adaptation Strategies for Global Change, 2017, vol. 22, issue 2, pages 233-245
Abstract: Abstract Agriculture is one of the major sources of nitrous oxide (N2O), a potent greenhouse gas (GHG) whose atmospheric concentrations are estimated to increase with efforts to increase food production through increasing nitrogen (N) inputs. The objective of this study was to quantify N2O emissions from maize (Zea mays L.) and winter wheat (Triticum aestivum L.) fields amended with inorganic, organic N and a combination of both sources (integrated management), in tropical (Zimbabwe) and temperate (China) climatic conditions. In Zimbabwe N2O emissions were measured from maize plots, while in China emissions were measured from maize and winter wheat plots. In Zimbabwe the treatments were; (i) Control, (ii) 60 kg N ha−1 ammonium nitrate (NH4NO3), (iii) 120 kg N ha−1 NH4NO3, (iv) 60 kg ha−1 cattle (Bos primigenius) manure-N, plus 60 kg N ha−1 NH4NO3, (v) 60 kg N ha−1 cattle manure-N, and (vi) 120 kg N ha−1 cattle manure-N. In China, treatments were; (i) Control, (ii) 300 kg N ha−1 Urea, (iii) 92 kg N ha−1 Urea plus 65 kg ha−1 chicken (Gallus domesticus) manure-N, (iv) 100 kg N ha−1 Urea and (v) 100 kg N ha−1 control release Urea. Our results showed that under both temperate and tropical conditions, integrated nutrient management resulted in lower N2O emissions compared to inorganic fertilizers which had higher total and yield-scale N2O emissions. We conclude that by combining organic and inorganic N sources, smallholder farmers in both China and Zimbabwe, and other countries with similar climatic conditions, can mitigate agricultural emissions without compromising productivity.
Keywords: Mitigation; Nitrous oxide; Organic and Inorganic N; Smallholder farming systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed
Downloads: (external link)
http://link.springer.com/10.1007/s11027-014-9560-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
http://link.springer.com/10.1007/s11027-014-9560-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text
Persistent link:http://EconPapers.repec.org/RePEc:spr:masfgc:v:22:y:2017:i:2:d:10.1007_s11027-014-9560-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
http://www.springer.com/economics/journal/11027
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Series data maintained by Sonal Shukla (sonal.shukla@springer.com).
Series data maintained by Sonal Shukla (sonal.shukla@springer.com).
For further details log on website :
http://econpapers.repec.org/article/sprmasfgc/v_3a22_3ay_3a2017_3ai_3a2_3ad_3a10.1007_5fs11027-014-9560-9.htm
No comments:
Post a Comment