Author
Abstract
In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated cellulose. The pretreatment did not have a strong effect on wood component dissolution (weight of residues: 91.7–98.8%). The residues contained relatively high amounts of lignin (26.6–32.6%) with low adsorption of [Emim]Ac (0.9–2.7%). Meanwhile, the crystallinity index (CrI) of cellulose in the wood was significantly reduced by pretreatment, from 50.9% to 28.4–37.1%. In spite of the high lignin contents in the residues, their glucose liberation values by enzymatic saccharification using a cellulase mixture were 3–16 times greater than that of untreated wood. A good correlation was found between the saccharification effectiveness of pretreated samples and the CrI. Although lignin dissolved in [Emim]Ac continued to accumulate after repeated use of [Emim]Ac, the pretreatment was found to be effective for three consecutive cycles without the need to remove the dissolved materials.
References
© The Japan Wood Research Society 2017
For further details log on website :
https://link.springer.com/article/10.1007/s10086-017-1681-9
Original Article
First Online: 12 December 2017
Abstract
In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated cellulose. The pretreatment did not have a strong effect on wood component dissolution (weight of residues: 91.7–98.8%). The residues contained relatively high amounts of lignin (26.6–32.6%) with low adsorption of [Emim]Ac (0.9–2.7%). Meanwhile, the crystallinity index (CrI) of cellulose in the wood was significantly reduced by pretreatment, from 50.9% to 28.4–37.1%. In spite of the high lignin contents in the residues, their glucose liberation values by enzymatic saccharification using a cellulase mixture were 3–16 times greater than that of untreated wood. A good correlation was found between the saccharification effectiveness of pretreated samples and the CrI. Although lignin dissolved in [Emim]Ac continued to accumulate after repeated use of [Emim]Ac, the pretreatment was found to be effective for three consecutive cycles without the need to remove the dissolved materials.
Acknowledgements
The study was partly supported by a Grant-in-Aid for Challenging Exploratory Research (JP26660138) from the Japan Society for the Promotion of Science (JSPS) KAKENHI.
References
- 1.Ministry of Agriculture, Forestry and Fisheries, Japan (2015) Annual report on forest and forestry in Japan FY 2015 (summary), Japan. pp 9–19. http://www.rinya.maff.go.jp/j/kikaku/hakusyo/27hakusyo/attach/pdf/index-1.pdf. Accessed 24 July 2017
- 2.Xiao W, Yin W, Xia S, Ma P (2012) The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohyd Polym 87:2019–2023CrossRefGoogle Scholar
- 3.Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484CrossRefGoogle Scholar
- 4.Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRefGoogle Scholar
- 5.Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148CrossRefPubMedGoogle Scholar
- 6.Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar
- 7.Miyafuji H, Suzuki N (2012) Morphological changes in sugi (Cryptomeria japonica) wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 58:222–230CrossRefGoogle Scholar
- 8.Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22:490CrossRefGoogle Scholar
- 9.Swatloski RD, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMedGoogle Scholar
- 10.Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review. Indus Crops Prod 32:175–201CrossRefGoogle Scholar
- 11.Kanbayashi T, Miyafuji H (2014) Comparative study of morphological changes in hardwoods treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 60:152–159CrossRefGoogle Scholar
- 12.Miyafuji H, Miyata K, Saka S, Ueda F, Mori M (2009) Reaction behaviour of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 55:215–219CrossRefGoogle Scholar
- 13.Kishino M, Taniguchi R, Nakagawa-izumi A, Ohi H (2009) Chemical characteristics of wood materials treated with an ionic liquid, 1-n-butyl-3-methylimidazolium chloride. Mokuzai Gakkaishi (in Japanese) 55:243–248CrossRefGoogle Scholar
- 14.Mood SH, Golfeshan AH, Tabatabaei M, Abbasalizadeh S, Ardjmand M (2013) Comparison of different ionic liquids pretreatment for barley straw enzymatic saccharification. Biotech 3:399–406Google Scholar
- 15.Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRefPubMedGoogle Scholar
- 16.Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefPubMedGoogle Scholar
- 17.Sathitsuksanoh N, George A, Zhang YHP (2012) New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 88:169–180CrossRefGoogle Scholar
- 18.Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRefPubMedGoogle Scholar
- 19.Weerachanchai P, Lee JM (2014) Recyclability of an ionic liquid for biomass pretreatment. Bioresour Technol 169:336–343CrossRefPubMedGoogle Scholar
- 20.Tanifuji K, Takahashi S, Kajiyama M, Ohi H (2011) Advantage of acid sulfite cooking as process of bioethanol production. Jpn TAPPI J 65:494–505CrossRefGoogle Scholar
- 21.Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer, Tokyo (Chap. 2.2)CrossRefGoogle Scholar
- 22.Wang Y, Radosevich M, Hayes D, Labbé N (2011) Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 108:1042–1048CrossRefPubMedGoogle Scholar
- 23.Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941CrossRefGoogle Scholar
- 24.Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405CrossRefPubMedGoogle Scholar
- 25.Ichiura H, Hirose Y, Masumoto M, Ohtani Y (2017) Ionic liquid treatment for increasing the wet strength of cellulose paper. Cellulose 24:3469–3477CrossRefGoogle Scholar
© The Japan Wood Research Society 2017
For further details log on website :
https://link.springer.com/article/10.1007/s10086-017-1681-9
No comments:
Post a Comment