Author
Different soils of an urban forest in New York City showed relatively low, yet similar rates of N mineralization and nitrification in laboratory potential measurements. This consistent pattern occurred even though a number of factors known to influence these processes (including overstory vegetation, soil type, and heavy metal levels) differed between the urban samples. Net N mineralization rates in forest floor and A horizon samples from a hemlock stand within the urban forest were 81% and 53% lower than respective samples from a comparable rural stand. In addition, all forest floor and A horizon samples from the urban forest were extremely hydrophobic. The low mineralization rates and hydrophobic nature of the urban samples suggested that factors associated with the ‘urban grime’ hydrocarbons may be limiting the activity of soil microbes and invertebrates. Trampling and high concentrations of heavy metals may have synergistic effects that would act to reduce net N mineralization and nitrification within the urban forest.
References
About This Article As :
https://link.springer.com/article/10.1007/BF02180230
Different soils of an urban forest in New York City showed relatively low, yet similar rates of N mineralization and nitrification in laboratory potential measurements. This consistent pattern occurred even though a number of factors known to influence these processes (including overstory vegetation, soil type, and heavy metal levels) differed between the urban samples. Net N mineralization rates in forest floor and A horizon samples from a hemlock stand within the urban forest were 81% and 53% lower than respective samples from a comparable rural stand. In addition, all forest floor and A horizon samples from the urban forest were extremely hydrophobic. The low mineralization rates and hydrophobic nature of the urban samples suggested that factors associated with the ‘urban grime’ hydrocarbons may be limiting the activity of soil microbes and invertebrates. Trampling and high concentrations of heavy metals may have synergistic effects that would act to reduce net N mineralization and nitrification within the urban forest.
References
- Adams, S., B.R. Strain & M.S. Adams (1970) Water-repellent soils, fire, and annual plant cover in a desert scrub community of southeastern California. Ecology 51: 696–700Google Scholar
- Binkley, D., J. Aber & K. Nadelhoffer (1986) Nitrogen availability in some Wisconsin forests: comparisons of resin bags and on-site incubations. Biology and Fertility of Soils 2: 77–82Google Scholar
- Bremner, J.M. & L.A. Douglas (1971) Use of plastic films for aeration in soil incubation experiments. Soil Biology and Biochemistry 3: 289–296Google Scholar
- Britton, N.L. (1906) The hemlock grove on the banks of the Bronx River and what it signifies. Transactions of the Bronx Society of Arts and Sciences 1: 5–13Google Scholar
- Broddin, W., W. Cautreels & K. Van Cauwenberghe (1980) On the aliphatic and polyaromatic hydrocarbon levels in urban and background aerosols from Belgium and The Netherlands. Atmospheric Environment 14: 895–910Google Scholar
- Broughton, J.G., D.W. Fisher, Y.W. Isachsen & L.V. Richard (1966) Geology of New York: a short account. The University of New York, The State Education Department and New York State Museum and Science Service Educational Leaflet No. 20Google Scholar
- Bornkamm, R., J.A. Lee & M.R.D. Seaward (Eds) (1982) Urban Ecology. The Second European Ecological Symposium, Berlin, 8–12 September 1980. Blackwell Scientific Publications, London, EnglandGoogle Scholar
- Carlyle, J.C. & D.C. Malcolm (1986) Nitrogen availability beneath pure spruce and mixed larch + spruce stands growing on a deep peat. I. Net N mineralization measured by field and laboratory incubations. Plant and Soil 93: 95–113Google Scholar
- Climatography of the United States No. 20. (1985) Climatic summaries for selected sites in New York, 1951–1980. National Oceanic and Atmospheric AdministrationGoogle Scholar
- Cole, D.N. (1985) Recreational trampling effects on six habitat types in western Montana. USDA Forest Service Research Paper INT-350. Intermountain Research Station, Ogden, Utah, USAGoogle Scholar
- DeBano, L.F. (1971) The effects of hydrophobic substances on water movement in soil during infiltration. Soil Science Society of America, Proceedings 35: 340–343Google Scholar
- DeBano, L.F., L.D. Mann & D.A. Hamilton (1970) Translocation of hydrophobic substances into soil by burning organic litter. Soil Science Society of America, Proceedings 34: 130–133Google Scholar
- Doelman, P. & L. Haanstra (1984) Short-term and long-term effects of cadmium, chromium, copper, nickel, lead, and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil 75: 317–327Google Scholar
- Farmer, C.T. & T.L. Wade (1986) Relationship of ambient atmospheric hydrocarbon (C12C32) concentrations to deposition. Water, Air and Soil Pollution 29: 439–452Google Scholar
- Flanagan, P.W. & K. Van Cleve (1983) Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Canadian Journal of Forest Research 13: 795–817Google Scholar
- Friedland, A.J., A.H. Johnson & T.G. Siccama (1986) Zinc, Cu, Ni and Cd in the forest floor in the northeastern United States. Water, Air and Soil Pollution 29: 233–243Google Scholar
- Gill, D. & P. Bonnett (1973) Nature in the Urban Landscape: A Study of City Ecosystems. York Press, Baltimore, Maryland, USAGoogle Scholar
- Giovannini, G. & S. Lucchesi (1984) Differential thermal analysis and infrared investigations on soil hydrophobic substances. Soil Science 137: 457–463Google Scholar
- Gleason, H.A. & A. Cronquist (1963) Manual of Vascular Plants of Northeastern United States and Adjacent Canada. D. Van Nostrand Company. New YorkGoogle Scholar
- Gosz, J.R. & C.S. White (1986) Seasonal and annual variation in nitrogen mineralization and nitrification along an elevational gradient in New Mexico. Biogeochemistry 2: 281–297Google Scholar
- Gosz, J.R., D.R. Brookins & D.I. Moore (1983) Using strontium isotope ratios to estimate inputs to ecosystems. BioScience 33: 23–30Google Scholar
- Graustein, W.C. & R.L. Armstrong (1983) The use of strontium-87/strontium-86 ratios to measure atmospheric transport into forested watersheds. Science 219: 289–292Google Scholar
- Grodzinski, W., J. Weiner & P.F. Maycock (Eds) (1984) Forest Ecosystems in Industrial Regions. Springer-Verlag, New York, New York, USAGoogle Scholar
- Jamison, V.C. (1946) Resistance to wetting in the surface of sandy soils under citrus trees in central Florida and its effect upon penetration and the efficiency of irrigation. Soil Science Society of America, Proceedings 11: 103–109Google Scholar
- Johnson, A.H., T.G. Siccama & A.J. Friedland (1982) Spatial and temporal patterns of lead accumulation in the forest floor in the northeastern United States. Journal of Environmental Quality 11: 577–580Google Scholar
- Klein, T.M. & M. Alexander (1986) Effects of the quality and duration of application of simulated acid precipitation on nitrogen mineralization and nitrification in a forest soil. Water, Air and Soil Pollution 28: 309–318Google Scholar
- Knopf, E.B. (1927) Some results of recent work in the southern Taconic area. American Journal of Science 24: 429–458Google Scholar
- Matsumoto, G. & T. Hanya (1980) Organic constituents in atmospheric fallout in the Tokyo area. Atmospheric Environment 14: 1409–1419Google Scholar
- McGhie, D.A. & A.M. Posner (1981) The effect of plant top material on the water repellence of fired sands and water repellent soils. Australian Journal of Agricultural Research 32: 609–520Google Scholar
- Nadelhoffer, K.J., J.D. Aber & J.M. Melillo (1983) Leaf litter production and soil organic matter dynamics along a nutrient availability gradient in southern Wisconsin (USA). Canadian Journal of Forest Research 13: 12–21Google Scholar
- National Academy of Sciences (1983) Acid Deposition: Atmospheric Processes in Eastern North America: A Review of Current Scientific Understanding. National Research Council, National Academy Press, Washington, D.C., USAGoogle Scholar
- National Academy of Sciences (1984) Acid Deposition: Processes of Lake Acidification. National Research Council, National Academy Press, Washington, D.C., USAGoogle Scholar
- Neuhauser, E.F., R.C. Loehr, D.L. Milligan & M.R. Malecki (1985) Toxicity of metals to the earthworm Eisenia fetida. Biology and Fertility of Soils 1: 149–152Google Scholar
- Numata, M. (1977) The impact of urbanization on vegetation in Japan. In: A. Miyawaki & R. Tuxen(Eds) Vegetation Science and Environmental Protection (pp. 161–171). MAruzen, Tokyo, JapanGoogle Scholar
- Olson, R.K. & W.A. Reiners (1983) Nitrification in subalpine balsam fir soils: tests for inhibitory factors. Soil Biology and Biochemistry 15: 413–418Google Scholar
- Pack, A.B. (1974) The climate of New York. In: Climates of the States. Vol. 1. Eastern States. Water Information Center, Inc., Port Washington, New York, USAGoogle Scholar
- Reeder, C.J. & M.F. Jurgensen (1979) Fire induced water repellency in forest soils of upper Michigan. Canadian Journal of Forest Research 9: 369–373Google Scholar
- Richardson, J.L. & F.D. Hale (1978) Influence of vegetation on water repellency in selected western Wisconsin, USA soils. Soil Science Society of America, Journal 42: 465–467Google Scholar
- Robertson, G.P. (1982) Factors regulating nitrification in primary and secondary succession. Ecology 63: 1561–1573Google Scholar
- Roundtree, R.A. (Ed) (1984) Ecology of the Urban Forest. Part I. Structure and Composition. Urban Ecology 8: 1–178Google Scholar
- Ruhling, A. & G. Tyler (1973) Heavy metal pollution and decomposition of spruce needle litter. Oikos 24: 402–416Google Scholar
- Savage, S.N., J.P. Martin & J. Letey (1972) Substances contributing to fire-induced water repellency in soils. Soil Science Society of America, Proceedings 36: 674–678Google Scholar
- Schlesinger, W.H. & W.A. Reiners (1974) Deposition of water and cations on artificial foliar collectors in fir krummholz of New England mountains. Ecology 55: 378–386Google Scholar
- Schuberth, C.J. (1968) The Geology of New York City and Environs. Natural History Press, New York, New York, USAGoogle Scholar
- Seastedt, T.R. (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review in Entomology 29: 25–46Google Scholar
- Secor, W., L.F. Koehler, D.F. Kinsman, M.G. Cline, W.J. Moran, J.D. Ruffner, J.D. Sheetz & L.P. Kelsey (1955) Soil Survey of Dutchess County, New York. USDA Soil Conservation Service and Cornell University Agricultural Experiment Station Series 1939, No. 23Google Scholar
- Smeltzer, D.L.K., D.R. Bergdahl & J.R. Donnelly (1986) Forest ecosystem responses to artificially induced soil compaction. II. Selected soil microorganism populations. Canadian Journal of Forest Research 16: 870–872Google Scholar
- Stern, A.C., R.W. Boubel, D.B. Turner & D.L. Fox (1984) Fundamentals of Air Pollution. Academic Press, New York, New York, USAGoogle Scholar
- Thornes, L.A. (1974) Soil survey of the hemlock forest at the New York Botanical Garden, Bronx, New York 10458. Report prepared by the USDA Soil Conservation Service in cooperation with Cornell UniversityGoogle Scholar
- Tyler, G. (1975) Heavy metal pollution and mineralization of nitrogen in forest soils. Nature 255: 701–702Google Scholar
- Vitousek, P.M., J.R. Gosz, C.C. Grier, J.M. Melillo & W.A. Reiners (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs 52: 155–177Google Scholar
- Vitousek, P.M. & P.A. Matson (1985) Causes of delayed nitrate production in two Indiana forests. Forest Science 31: 122–131Google Scholar
- Volchok, H.L., L.E. Toonkel & M. Schonberg (1974) Trace metals — Fallout in New York City II. US Atomic Energy Commission Report HASL-281. Health and Safety Laboratory, New York, New York, USAGoogle Scholar
- Wade, T.L. (1983) Bulk atmospheric deposition of hydrocarbons to lower Chesapeake Bay. Atmospheric Environment 17: 2311–2320Google Scholar
- White, C.S. (1986) Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem. Biology and Fertility of Soils 2: 97–104Google Scholar
- White, C.S. & J.R. Gosz (1987) Factors controlling nitrogen mineralization in New Mexico forest ecosystems. Biology and Fertility of Soils 5: 195–202Google Scholar
About This Article As :
- Cite this article as:
- White, C.S. & McDonnell, M.J. Biogeochemistry (1988) 5: 243. https://doi.org/10.1007/BF02180230
- DOIhttps://doi.org/10.1007/BF02180230
- Publisher NameKluwer Academic Publishers
- Print ISSN0168-2563
- Online ISSN1573-515X
https://link.springer.com/article/10.1007/BF02180230
No comments:
Post a Comment