Pulp paper
Pulp is a lignocellulosic fibrous material prepared by chemically or mechanically separating cellulose fibres from wood, fiber crops or waste paper. The wood fiber sources required for pulping are "45% sawmill residue, 21% logs and chips, and 34% recycled paper" (Canada, 2014). Pulp is one of the most abundant raw materials worldwide.
History
Using wood to make paper is a fairly recent innovation. The ancient Egyptians were the first to make paper by crushing reeds and pressing them together to form a paper-like material. Later, papermaking using cotton and linen fibers spread to Europe in the 13th century. Medieval historian Lynn White credited the spinning wheel with increasing the supply of rags, which led to cheap paper, which was a factor in the development of printing. By the 1800s, fibre crops such as flax, which provided linen fibres, were still the primary material source, and paper was a relatively expensive commodity. The use of wood to make pulp for paper began with the development of mechanical pulping in Germany by F.G. Keller in the 1840s, and by the Canadian inventor Charles Fenerty in Nova Scotia. Chemical processes quickly followed, first with J. Roth's use of sulfurous acid to treat wood, followed by Benjamin Tilghman's U.S. patent on the use of calcium bisulfite, Ca(HSO3)2, to pulp wood in 1867.
Manufacture of wood product
Many kinds of paper are made from wood with nothing else mixed into them (with some exceptions, like resume paper, which may include cotton). This includes newspaper, magazines and even toilet paper. Most pulp mills use good forest management practices in harvesting trees to ensure that they have a sustainable source of raw materials. One of the major complaints about harvesting wood for pulp mills is that it reduces the biodiversity of the harvested forest. Trees raised specifically for pulp production account for 16 percent of world pulp production, old-growth forests account for 9 percent, and second- and third- and more generation forests account for the rest. Reforestation is practiced in most areas, so trees are a renewable resource. The FSC (Forest Stewardship Council ), SFI (Sustainable Forestry Initiative ), PEFC (Programme for the Endorsement of Forest Certification ), and other bodies certify paper made from trees harvested according to guidelines meant to ensure good forestry practices.
Chemical pulp
Chemical pulp is produced by combining wood chips and chemicals in large vessels known as digesters where heat and the chemicals break down the lignin, which binds the cellulose fibres together, without seriously degrading the cellulose fibres. Chemical pulp is used for materials that need to be stronger or combined with mechanical pulps to give a product different characteristics. The kraft process is the dominant chemical pulping method, with the sulfite process being second. Historically soda pulpingwas the first successful chemical pulping method.
Recycle pulp
Organosolv pulping uses organic solvents at temperatures above 140 °C to break down lignin and hemicellulose into soluble fragments. The pulping liquor is easily recovered by distillation. The reason for using a solvent is to make the lignin more soluble in the cooking liquor. Most common used solvents are methanol, ethanol, formic acid and acetic acid often in combination with water.
- Wikipedia
Pulp is a lignocellulosic fibrous material prepared by chemically or mechanically separating cellulose fibres from wood, fiber crops or waste paper. The wood fiber sources required for pulping are "45% sawmill residue, 21% logs and chips, and 34% recycled paper" (Canada, 2014). Pulp is one of the most abundant raw materials worldwide.
History
Using wood to make paper is a fairly recent innovation. The ancient Egyptians were the first to make paper by crushing reeds and pressing them together to form a paper-like material. Later, papermaking using cotton and linen fibers spread to Europe in the 13th century. Medieval historian Lynn White credited the spinning wheel with increasing the supply of rags, which led to cheap paper, which was a factor in the development of printing. By the 1800s, fibre crops such as flax, which provided linen fibres, were still the primary material source, and paper was a relatively expensive commodity. The use of wood to make pulp for paper began with the development of mechanical pulping in Germany by F.G. Keller in the 1840s, and by the Canadian inventor Charles Fenerty in Nova Scotia. Chemical processes quickly followed, first with J. Roth's use of sulfurous acid to treat wood, followed by Benjamin Tilghman's U.S. patent on the use of calcium bisulfite, Ca(HSO3)2, to pulp wood in 1867.
Manufacture of wood product
The timber resources used to make wood pulp are referred to as pulpwood. Wood pulp comes from softwood trees such as spruce, pine, fir, larch and hemlock, and hardwoodssuch as eucalyptus, aspen and birch.
A pulp mill is a manufacturing facility that converts wood chips or other plant fibre source into a thick fiberboard which can be shipped to a paper mill for further processing. Pulp can be manufactured using mechanical, semi-chemical or fully chemical methods (kraft and sulfite processes). The finished product may be either bleached or non-bleached, depending on the customer requirements.
Wood and other plant materials used to make pulp contain three main components (apart from water): cellulose fibers (desired for papermaking), lignin (a three-dimensional polymer that binds the cellulose fibres together) and hemicelluloses, (shorter branched carbohydrate polymers). The aim of pulping is to break down the bulk structure of the fibre source, be it chips, stems or other plant parts, into the constituent fibres.
Harvesting treesMany kinds of paper are made from wood with nothing else mixed into them (with some exceptions, like resume paper, which may include cotton). This includes newspaper, magazines and even toilet paper. Most pulp mills use good forest management practices in harvesting trees to ensure that they have a sustainable source of raw materials. One of the major complaints about harvesting wood for pulp mills is that it reduces the biodiversity of the harvested forest. Trees raised specifically for pulp production account for 16 percent of world pulp production, old-growth forests account for 9 percent, and second- and third- and more generation forests account for the rest. Reforestation is practiced in most areas, so trees are a renewable resource. The FSC (Forest Stewardship Council ), SFI (Sustainable Forestry Initiative ), PEFC (Programme for the Endorsement of Forest Certification ), and other bodies certify paper made from trees harvested according to guidelines meant to ensure good forestry practices.
Preparation for pulping
Wood chipping is the act and industry of chipping wood for pulp, but also for other processed wood products and mulch. Only the heartwood and sapwood are useful for making pulp. Bark contains relatively few useful fibers and is removed and used as fuel to provide steam for use in the pulp mill. Most pulping processes require that the wood be chipped and screened to provide uniform sized chips.
Pulping
There are a number of different processes which can be used to separate the wood
Mechanical pulp
Manufactured grindstones with embedded silicon carbide or aluminum oxide can be used to grind small wood logs called "bolts" to make stone pulp (SGW). If the wood is steamed prior to grinding it is known as pressure ground wood pulp (PGW). Most modern mills use chips rather than logs and ridged metal discs called refiner plates instead of grindstones. If the chips are just ground up with the plates, the pulp is called refiner mechanical pulp (RMP) and if the chips are steamed while being refined the pulp is called thermomechanical pulp (TMP). Steam treatment significantly reduces the total energy needed to make the pulp and decreases the damage (cutting) to fibres. Mechanical pulps are used for products that require less strength, such as newsprint and paperboards.
Thermomechanical pulp
Thermomechanical pulp is pulp produced by processing wood chips using heat (thus "thermo-") and a mechanical refining movement (thus "-mechanical"). It is a two-stage process where the logs are first stripped of their bark and converted into small chips. These chips have a moisture content of around 25–30 percent and a mechanical force is applied to the wood chips in a crushing or grinding action which generates heat and water vapour and softens the lignin thus separating the individual fibres. The pulp is then screened and cleaned, any clumps of fibre are reprocessed. This process gives a high yield of fibre from the timber (around 95 percent) and as the lignin has not been removed, the fibres are hard and rigid.Chemi-Thermomechanical pulp
Wood chips can be pretreated with sodium carbonate, sodium hydroxide, sodium sulfite and other chemicals prior to refining with equipment similar to a mechanical mill. The conditions of the chemical treatment are much less vigorous (lower temperature, shorter time, less extreme pH) than in a chemical pulping process since the goal is to make the fibres easier to refine, not to remove lignin as in a fully chemical process. Pulps made using these hybrid processes are known as chemithermomechanical pulps (CTMP).Chemical pulp
Chemical pulp is produced by combining wood chips and chemicals in large vessels known as digesters where heat and the chemicals break down the lignin, which binds the cellulose fibres together, without seriously degrading the cellulose fibres. Chemical pulp is used for materials that need to be stronger or combined with mechanical pulps to give a product different characteristics. The kraft process is the dominant chemical pulping method, with the sulfite process being second. Historically soda pulpingwas the first successful chemical pulping method.
Recycle pulp
Recycled pulp is also called deinked pulp (DIP). DIP is recycled paper which has been processed by chemicals, thus removing printing inks and other unwanted elements and freed the paper fibres. The process is called deinking.
DIP is used as raw material in papermaking. Many newsprint, toilet paper and facial tissuegrades commonly contain 100 percent deinked pulp and in many other grades, such as lightweight coated for offset and printing and writing papers for office and home use, DIP makes up a substantial proportion of the furnish.
Organosoly pulpingOrganosolv pulping uses organic solvents at temperatures above 140 °C to break down lignin and hemicellulose into soluble fragments. The pulping liquor is easily recovered by distillation. The reason for using a solvent is to make the lignin more soluble in the cooking liquor. Most common used solvents are methanol, ethanol, formic acid and acetic acid often in combination with water.
- Wikipedia
No comments:
Post a Comment