BioResourcers
Full Text: PDF
Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126
For further details log on website :
http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_1_1222_Kartal_Wood_Bamboo_Composites_Fungal_Termite
Wood and Bamboo-PP Composites: Fungal and Termite Resistance, Water Absorption, and FT-IR Analyses
Abstract
This study evaluated biological resistance of composites produced from polypropylene and either wood or bamboo by using two different levels of particle content and three different particle sizes. Composite specimens containing higher particle content and smaller particle size resulted in increased mass losses in decay resistance tests against Tyromyces palustris, a standardized test fungus, Schizophyllum commune, and Pycnoporus coccineus. As particle content increased, mass losses in laboratory termite resistance tests increased; however, decreased particle size caused slightly decreased mass losses. Higher mass losses in bamboo-composites were obtained compared to mass losses in wood-composites in biological resistance tests. There is no significant effect of particle size on water absorption and thickness swell. The IR spectrums of composite specimens showed that significant changes were seen in the wood components following the application of heat during the manufacturing process. While the IR spectrum of WPC specimens with 70% wood was similar to the wood, the composite specimen with 50% wood displayed similarities to polypropylene.
Keywords
Wood plastic composites; Biological resistance; Schizophyllum commune; Pycnoporus coccineus; Coptotermes formosanus
Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126
For further details log on website :
http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_1_1222_Kartal_Wood_Bamboo_Composites_Fungal_Termite
No comments:
Post a Comment