Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Wednesday, 29 June 2016

Estimation of biomass in wheat using random forest regression algorithm and remote sensing data

Published Date
June 2016, Vol.4(3):212–219, doi:10.1016/j.cj.2016.01.008
Open Access, Creative Commons license, Funding information

Title 

Estimation of biomass in wheat using random forest regression algorithm and remote sensing data

  • Author 
  • Li'ai Wang a,
  • Xudong Zhou b
  • Xinkai Zhu a
  • Zhaodi Dong a
  • Wenshan Guo a,,
  • aKey Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • bInformation Engineering College of Yangzhou University, Yangzhou 225009, China
Received 15 October 2015. Revised 29 January 2016. Accepted 15 March 2016. Available online 30 March 2016.

Abstract
Wheat biomass can be estimated using appropriate spectral vegetation indices. However, the accuracy of estimation should be further improved for on-farm crop management. Previous studies focused on developing vegetation indices, however limited research exists on modeling algorithms. The emerging Random Forest (RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling. The objectives of this study were to (1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass, (2) test the performance of the RF regression model, and (3) compare the performance of the RF algorithm with support vector regression (SVR) and artificial neural network (ANN) machine-learning algorithms for wheat biomass estimation. Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing, booting, and anthesis stages of growth. Fifteen vegetation indices were calculated based on these images. In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition. The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage, and its robustness is as good as SVR but better than ANN. The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.

Keywords
  • Above-ground dry biomass
  • Triticum aestivum
  • Vegetation indices
  • Wheat

  • 1 Introduction

    Biomass is one of the most useful indicators of crops vegetation development and health. Measuring biomass directly is a destructive and expensive procedure. More recent estimates are based on remotely sensed data, such as vegetation indices (VIs) [1], [2], [3] and [4]. Kross et al. [1] established relationships between corn biomass and VIs such as the NDVI (Normalized Difference Vegetation Index), Green-NDVI, RVI (Ratio Vegetation Index), and MTVI2 (Modified Triangular Vegetation Index 2) computed from the SPOT and Landsat images. Gnyp et al. [3] found that SAVI (Soil-Adjusted Vegetation Index), OSAVI (Optimized Soil-Adjusted Vegetation Index), and MTVI2 had stronger relationships with rice biomass at the jointing stage than that at booting. Gao et al. [4] proposed that maize biomass could be estimated by VIs calculated using Chinese environmental satellite (HJ) images [e.g. NDVI, RVI, and the enhanced vegetation index (EVI)]. Jin et al. [5] reported that the estimation accuracy of wheat biomass was better using a combination of VIs and radar polarimetric parameters (RPPs) than using VIs or RPPs alone.
    Remote estimation of biomass requires application of diverse methods and techniques. In recent years machine-learning algorithms were trialed for ability to perform flexible input–output nonlinear mappings between remotely sensed data and biomass [6], [7] and [8]. Typically, artificial neural networks (ANNs) and support vector regressions (SVRs) were employed to couple with VIs to build monitoring models with improved prediction accuracy of remote estimation of biomass in crops. For instance, Wang et al. [9] provided an effective model for assessing the biomass of wheat with ANNs and VIs (i.e. RVI, NDVI, GNDVI, SAVI, OSAVI, RDVI) calculated based on ASD FieldSpec data. Clevers et al. [10] estimated grassland biomass using SVRs and VIs such as the RVI, NDVI, WDVI, SAVI, GEMI (Global Environmental Monitoring Index), and EVI (Enhanced Vegetation Index) calculated based on ASD FieldSpec data.
    Among various machine-learning algorithms, the emerging Random Forest (RF) algorithm proposed by Leo Breiman and Cutler Adele in 2001 has been regarded as one of the most precise prediction methods for classification and regression, as it can model complex interactions among input variables and is relatively robust in regard to outliers. The RF algorithm presents several advantages; it runs efficiently on large datasets, it is not sensitive to noise or over-fitting [11], it can handle thousands of input variables without variable deletion, and it has fewer parameters compared with that of other machine-learning algorithms (e.g. ANN or SVR). The RF classification algorithm has been applied to many remote sensing domains such as land cover classification [12], [13] and [14] and other fields related to the environment and water resources [15] and [16]. To our knowledge, only a few studies have reported the use of the RF regression algorithm in remote sensing applications, including monitoring of forest growth, wetland vegetation, and water resources [6], [17] and [18]. Furthermore, few studies have employed the RF regression algorithm based on VIs for estimating the biomass of winter wheat.
    The major objectives of this study were to: (i) investigate the applicability of the RF regression algorithm in combination with VIs to remotely estimate wheat biomass, (ii) test the performance of RF regression for estimating biomass, and (iii) compare the performance of RF with that of other machine-learning algorithms for the estimation of wheat biomass. Specifically, based on VIs calculated from China's environmental satellite (HJ) charge-coupled device (CCD) images, we employed the RF algorithm to construct models to estimate wheat biomass, and then, the RF algorithm was compared with the SVR and ANN machine-learning algorithms in terms of accuracy, goodness of fit, and robustness for estimating wheat biomass.

    2 Data source

    2.1 Experimental design and data acquisition

    Experiments were carried out in four counties (YiZheng, JiangYan, GaoYou and TaiXing) of Jiangsu province during the winter wheat growing seasons of 2010, 2011, 2012 and 2014. The local wheat cultivars were Yangmai 13, Yangmai 15, Yangmai 16, and Yangfumai 2. For each year's experiment, fifteen sample sites were established in each county and a plot of 30 × 30 m was randomly demarcated at each site. Within each plot, five subplots of 0.4 m × 0.4 m were established at least 10 m from each other. During three growth stages (jointing, booting and anthesis) wheat plants from each subplot (positions determined with a Global Positioning System GPS, Trimble GeoExplorer 2008 Series GeoXH, Trimble Navigation Limited, USA) at each site were collected, sealed in plastic bags, and sent to a laboratory for analysis. In the laboratory, the wheat plants from each subplot were dried in an oven at 80 °C for 48 h, after which the dry weight was determined. The dry weight was divided by the surface area of the subplot, and then the weight was converted to kg ha− 1. The biomass values of plants from the five subplots within each plot were averaged to represent the biomass of the entire plot.
    For each stage, the pooled data from 2010, 2011, 2012 and 2014 were randomly divided into a training dataset and an independent test dataset (75% and 25% of the pooled data, respectively). For the training dataset, the number of samples was 174 at jointing, 174 at booting, and 147 at anthesis. For the test dataset, the number of samples was 58 at jointing, 58 at booting, and 49 at anthesis. The training dataset was used to establish models to predict biomass during each growth stage, and the test dataset was used to test the quality and reliability of each prediction model.

    2.2 Remote sensing data and preprocessing

    Remotely sensed data (HJ satellite charge-coupled device) of wheat from the three stages were retrieved online from the China Centre for Resources Satellite Data and Application (CRESDA). The HJ satellite charge-coupled device (HJ-CCD) satellite system is China's environmental disaster and environmental monitoring satellite system. It includes two optical satellites, HJ-1A and HJ-1B, which are symmetrically equipped with two CCD cameras. They comprise four multispectral bands with a 30-m resolution and a 720-km swath. The spectral ranges of the four bands are 430–520 nm (B1-blue), 520–600 nm (B2-green), 630–690 nm (B3-red) and 760–900 nm (B4-near infrared).
    All HJ-CCD image data used in this study were completely corrected using ENVI4.7 remote sensing image processing software. Ground control points were located with a differential GPS unit during the field experiments. The map projection used a geographic coordinate system (Lat/Lon) as the projection type (WGS84) and a pixel size of 30 m × 30 m. A radiometric calibration was conducted using the HJ satellite calibration coefficients (e.g. gains and offsets). Atmospheric corrections were conducted using the MOTRAN 4 model embedded in the ENVI/FLAASH module of ENVI 4.7 software, and the input parameters were set based on the location, sensor type and ground weather conditions observed on the day each image was acquired. To improve the accuracy of pixel registration to within one pixel, coarse geometric corrections were made based on the 1:10,000 digitized raster map, after which, precise geometric corrections were made based on the GPS ground control points.

    2.3 Vegetation indices

    Vegetation indices (VIs) are usually used to quantify crop biomass. This study examined 15 VIs (Table 1) reported in literature to be well correlated with biomass. These VIs were calculated based on the four HJ-CCD bands.
    Table 1. Formulas of remote sensing vegetation indices.
    AcronymIndexFormulaReference
    NDVINormalized Difference Vegetation Index(RNIR–RR)/(RNIR + RR)[19]
    SAVISoil-Adjusted Vegetation Index(RNIR–RR) / (RNIR + RR + 0.5) × 1.5[20]
    OSAVIOptimized Soil-Adjusted Vegetation Index(RNIR–RR) / (RNIR + RR + 1.6) × 1.16[21]
    NRINitrogen Reflectance Index(RG–RR) / (RG + RR)[22]
    GNDVIGreen-NDVI(RNIR–RG) / (RNIR + RG)[23]
    SIPIStructure Insensitive Pigment Index(RNIR–RB) / (RNIR + RB)[24]
    PSRIPlant Senescence Reflectance Index(RR–RB) / RNIR[25]
    RVIRatio Vegetation IndexRNIR / RR[26]
    CRICarotenoid Reflectance Index1/RG + 1/RNIR[27]
    EVIEnhanced Vegetation Index2.5 × (RNIR – RR) / (1 + RNIR + 6 × RR – 7.5 × RB)[28]
    MSRModified Simple Ratio Index((RNIR / RR) – 1) /  [29]
    NLINonlinear Vegetation Index(RNIR × RNIR – RR) / (RNIR × RNIR + RR)[30]
    RDVIRe-normalized Difference Vegetation Index(RNIR – RR) /  [31]
    TVITransformational Vegetation Index[32]
    MTVI2Modified Triangular Vegetation Index 21.5 × [1.2 × (RNIR – RG) – 2.5 × (RR – RG)] / 
    [33]
    Ri denotes reflectance at band i (nanometer); RB represents reflectance of the blue band of HJ-CCD; RG represents reflectance of the green band of HJ-CCD; RR represents reflectance of the red band of HJ-CCD; RNIR represents reflectance of near infrared band of HJ-CCD.

    3 Models and statistics

    Based on the vegetation indices (VIs) in Table 1, RF, SVR and ANN were respectively used to remotely estimate wheat biomass during each growth stage. In each model, the vegetation indices were considered to be independent variables and biomass was the dependent variable.

    3.1 Random forest regression algorithm (RF)

    The RF regression algorithm is an ensemble-learning algorithm that combines a large set of regression trees. A regression tree represents a set of conditions or restrictions that are hierarchically organized and successively applied from a root to a leaf of the tree [34], [35] and [36]. The RF begins with many bootstrap samples that are drawn randomly with replacement from the original training dataset. A regression tree is fitted to each of the bootstrap samples. For each node per tree, a small set of input variables selected from the total set is randomly considered for binary partitioning. The regression tree splitting criterion is based on choosing the input variable with the lowest Gini Index, i.e.  , where f(tX(xi), j) is the proportion of samples with the value xi belonging to leave j as node t [36]. The predicted value of an observation is calculated by averaging over all the trees. Two parameters need to be optimized in the RF: the number of regression trees (ntree; default value is 500 trees) and the number of input variables per node (mtry; default value is 1/3 of the total number of variables).
    To model the relationship between VIs and wheat biomass in this study, given the set of training input–output (i.e. VIs–biomass) pairs, the RF regression model was conducted as follows:
    • 1)
      ntree bootstrap sample sets, i.e. Xi (i = bootstrap iteration, and its value was limited to the range of [1, ntree]), were randomly drawn with replacement from the original training dataset. The elements not included in Xi are referred to as out-of-bag data (OOB) for that bootstrap sample set.
    • 2)
      At each node per tree, mtry vegetation indices were randomly selected from all 15 vegetation indices and the best split from among those indices was chosen according the lowest Gini Index.
    • 3)
      For each tree, the data splitting process in each internal node of a rule was repeated from the root node until a previously specified stop condition was reached.
    For the three stages, the parameter values (ntree and mtry) were optimized using the training dataset and RMSE to find the values that could best predict the wheat biomass. For each stage, ntree values from 1000 to 9000 with intervals of length 1000 were tested [37], [38], [39], [40] and [41], and mtry was tested from 3 to 10 (Fig. 1). The ntree and mtry values that yielded the lowest RMSE were selected. According to Fig. 1, the values of ntree and mtry were 1000 and 3 at jointing and booting, respectively, and 3000 and 9 at anthesis.
    Fig. 1. Optimization of random forest parameters (ntree and mtry) using RMSE.

    3.2 Support vector regression (SVR)

    The Support Vector Machine (SVM) was originally used for classification problems, i.e. support vector classification (SVC) and was then extended for use with regression problems, i.e. namely support vector regression (SVR) [42]. The quality of the SVR models depends on a proper setting of the SVR meta-parameters, the loss function ε and the error penalty factor C. In addition, selection of the kernel function has an important impact on the final models. The commonly used radial basis kernel function (RBF), i.e. K(x, x′) = exp (−| | x − x′2/σ2) was applied in this study. Finally, we employed a cross-validation procedure to optimize these parameters including C, ε, and the RBF kernel parameter σ, yielding values of 30, 470 and 2.5 at jointing, 5, 400 and 1.1 at booting, and 5, 850 and 8 at anthesis, respectively.

    3.3 Artificial neural network (ANN)

    Among various machine-learning algorithms, artificial neural networks (ANNs) are the most common approaches to develop nonlinear regression [43]. Training an ANN needs selections including the network structure (i.e. the number of hidden layers and nodes per layer), proper initialization of the weights, learning rate, and training algorithm. In this work, the input layer was vegetation indices, and the output layer was wheat biomass. We optimized a two-layer back propagation neural network (BPNN) with tan-sigmoid (i.e.  ) hidden neurons and log-sigmoid (i.e. ) output neurons using the Levenberg–Marquardt algorithm. The ANN weights were initialized randomly according to the Nguyen–Widrow method [44]. Meanwhile, a cross-validation procedure was employed to set the number nodes per layer (i.e. 67 at jointing and booting, and 49 at anthesis, respectively).

    3.4 Statistical analysis

    Regarding model performances in this study, we used the coefficient of determination (R2) to account for goodness-of-fit, and the root mean square error (RMSE) and relative RMSE (%) to assess accuracy. The relative RMSE was used to compare performances across different machine-learning algorithms [44]. Generally, the performance of the model was estimated by comparing the differences in R2 and RMSE of the estimated-versus-measured value plots. Higher R2 and lower RMSE values, respectively, corresponded to higher precision and accuracy of a model for predicting wheat biomass.

    4 Results

    4.1 Evaluating model accuracy

    Using the R2 and RMSE values as metrics the performances of all models at each stage were evaluated with the test data from the corresponding stages and compared to identify the best model. For each stage, the R2 and RMSE values between estimated (using the RF, SVR or ANN model) and measured biomass values were compared by means of scatter plots (Fig. 2). The performance of the RF model shows an overall improvement compared to that of the SVR and ANN models. Compared with SVR, the RMSE of the RF model decreased to 32.3 kg ha− 1 at jointing, 296.1 kg ha− 1 at booting, and 366.0 kg ha− 1 at anthesis, and the corresponding R2 values increased to 0.067, 0.210 and 0.173; compared with ANN, the RMSE decreased to 293.6, 1490.9 and 1215.1 kg ha− 1 at each stage, and R2 increased by 0.233, 0.287 and 0.297, respectively.
    Fig. 2. One-to-one relationships between predicted and observed biomass values.

    4.2 Evaluating model robustness

    Relative RMSE results of the three regression methods for biomass at different growth stages are presented in Fig. 3. The error bars provide an idea of model robustness with respect to the input data. Different stages hardly impact the RF and SVR models performance in training or testing datasets. For each stage, the relative RMSE for the RF and SVR models respectively stabilize around 8% in the training and 20% in testing datasets. Regarding ANN, the performance of the training dataset was also robust at all three stages with the relative RMSE about 4%, but it performed unstably when applied to testing dataset. Specifically, the relative RMSE is about 35% at jointing, about 45% at booting, and about 30% at anthesis. For each model at each stage, the performance in testing is poorer than in the training dataset. ANN, in particular, showed a much better performance in training than in testing. Hence, in further analysis it will be important to determine how accurately a trained model performs when tested against ground reference measurements rather than the training data [44].
    Fig. 3. Relative RMSE (%) results for biomass estimation using RF, SVR, and ANN at different growth stages.

    5 Discussion

    The objective of this study was to employ accurate and robust random forest (RF) machine-learning algorithms to accurately estimate wheat biomass. Previous studies already used machine-learning algorithms such as SVR or ANN for remote estimations of biomass [6], [7], [8], [9] and [10]. It remains however to be questioned whether these are the most adequate algorithms to fulfill the requirement. This study compared RF with SVR and ANN for accuracy and robustness.
    By analyzing the estimated-versus-measured values (Fig. 2) the RF model had higher R2 and lower RMSE values than the SVR and ANN models for biomass estimates at each growth stage, indicating that RF models can provide accurate biomass estimations. Each node of the standard regression tree is created using the best split among all variables. Unlike this strategy, RF splits each node using the best among a subset of variables chosen randomly at the node. The specific size of the subset is the parameter mtry. Although this method seems to be contradictory, it performs relatively well compared to SVR and ANN (Fig. 2).
    RF rendered similar robustness with SVR at different growth stages in both the training and testing datasets (Fig. 3), and shows better robustness than ANN at each stage. Meanwhile, the RF model for each stage has a little better generalization capability than the ANN model, which behaves relatively unpredictable when used with independent input data that deviate from what was presented during the training stage [44] and [45]. Compared with the RF and SVR results for each stage, ANN shows much poorer performance in testing than in training. This is due to the fact that ANN is often applied to large amounts of sampling data, but SVR and RF are suitable for small amounts of sampling data. Another reason for this is possibly that the learning ability is too strong during the ANN process training, and thus the model obtained cannot reflect the hidden rules of samples that ultimately weaken prediction ability.
    Most of the 15 vegetation indices in this study are correlated. However, as demonstrated by Cutler et al. [46] RF is not sensitive to collinearity. This is very valuable in modeling, especially for a complex, nonlinear system because it is commonly difficult to decide which variable to remove when two (or more) variables correlate with each other [47].
    For estimation models of vegetation biochemical and biophysical variables to be useful in guiding on-farm crop management, they must perform well in farmers' fields. Therefore, data that fully represents real farm conditions should be included in model training and testing. Data in many previous studies were based on designated experimental sites rather than farmers' fields [48], [49] and [50]. In the present study, we pooled data from farmers' fields in 2010, 2011, 2012 and 2014, and then randomly divided it into a training dataset and an independent testing dataset (75% and 25%, respectively).
    A single vegetation index was usually selected in previous studies, to remotely estimate biomass in crops [51] and [52]. However, a single vegetation index is influenced by different degrees of saturability or soil background, and is consequently affected by regional specificity and timeliness [53]. This study shows that use of a combination of 15 vegetation indices and the RF regression algorithm improved the accuracy of prediction of wheat biomass. We propose for the first time use of RF regressions for remote monitoring of biomass, but the prediction accuracy of the method should be further investigated by optimizing the modeling algorithms.
    Previous studies of crop growth monitoring based on remotely sensed data have often used a single algorithm to monitor different growing parameters at different growth stages [54] and [55]. In this work, we used RF to estimate wheat biomass on a much larger scale, assuming that it would help to improve wheat growth monitoring in the study areas. It would be interesting to apply the method to monitor other crop growth parameters with different features to verify reproducibility. This research contributes to the establishment of management strategies for non-destructive monitoring and precise modeling methods.

    6 Conclusion

    Biomass is an important indicator of crop growth. To estimate biomass in wheat rapidly and non-destructively, an improved method that combines vegetation indices based on HJ-CCD and random forest (RF) regression method is proposed. Estimation accuracy and robustness of the RF model were verified for each stage (i.e. jointing, booting, and anthesis). Furthermore, the RF model results were compared with support vector regression (SVR) and artificial neural network (ANN) models. The estimation accuracy of RF outperformed that of SVR and ANN at each stage. For RF models, the R2 values for the estimated-versus-measured biomass regression for the three stages were 0.533, 0.721 and 0.79, respectively, and the corresponding RMSE values were 477, 1126.2 and 1808.2 kg ha− 1. The RF model was as robust as SVR and more robust than ANN. The relative RMSE values obtained from the RF and SVR models were about 8% in training and 20% in testing for each stage, respectively. The relative RMSE of ANN was about 4% in training at each stage, whereas the RMSE values in testing were about 35% at jointing, 45% at booting, and 30% at anthesis.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No. 31271642), the Natural Science Foundation of Education Department of Jiangsu Province (No. 09KJB20013, No. 12KJB520018), the Six Talent Summit Project of Jiangsu Province (No. 2011-NY039), and the Science and Technology Innovation Development Foundation of Yangzhou University (No. 2015CXJ022).

    References

      • [1]
      • A. Kross, H. McNairn, D. Lapen, M. Sunohara, C. Champagne
      • Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
      • Int. J. Appl. Earth Obs. Geoinf., Volume 34, 2015, pp. 235–248
      • Article
         | 
         PDF (4537 K)
         | 
        View Record in Scopus
        Citing articles (14)
      • [2]
      • Y.Y. Fu, G.J. Yang, J.H. Wang, X.Y. Song, H.K. Feng
      • Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements
      • Comput. Electron. Argic., Volume 100, 2014, pp. 51–59
      • Article
         | 
         PDF (1050 K)
         | 
        View Record in Scopus
        Citing articles (11)
      • [3]
      • M.L. Gnyp, Y.X. Miao, F. Yuan, S.L. Ustin, K. Yu, Y.K. Yao, S.Y. Huang, G. Bareth
      • Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages
      • Field Crops Res., Volume 155, 2014, pp. 42–55
      • Article
         | 
         PDF (3413 K)
         | 
        View Record in Scopus
        Citing articles (24)
      • [4]
      • S. Gao, Z. Niu, N. Huang, X.H. Hou
      • Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2
      • Int. J. Appl. Earth Obs. Geoinf., Volume 24, 2013, pp. 1–8
      • Article
         | 
         PDF (861 K)
         | 
        View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (23)
      • [5]
      • X.L. Jin, G.J. Yang, X.G. Xu, H. Yang, H.K. Feng, Z.H. Li, J.X. Shen, C.J. Zhao, Y.B. Lan
      • Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data
      • Remote Sens., Volume 7, 2015, pp. 13251–13272
      • View Record in Scopus
         | 
        Full Text via CrossRef
      • [6]
      • C.J. Gleason, J. Im
      • Forest biomass estimation from airborne LiDAR data using machine learning approaches
      • Remote Sens. Environ., Volume 125, 2012, pp. 80–91
      • Article
         | 
         PDF (1294 K)
         | 
        View Record in Scopus
        Citing articles (45)
      • [7]
      • J.M. Montes, F. Technow, B.S. Dhillon, F. Mauch, A.E. Melchinger
      • High-throughput non-destructive biomass determination during early plant development in maize under field conditions
      • Field Crops Res., Volume 121, 2011, pp. 268–273
      • Article
         | 
         PDF (178 K)
         | 
        View Record in Scopus
        Citing articles (41)
      • [8]
      • R. Prasad, A. Pandey, K.P. Singh, V.P. Singh, R.K. Mishra, D. Singh
      • Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions
      • Adv. Space Res., Volume 50, 2012, pp. 363–370
      • Article
         | 
         PDF (1059 K)
         | 
        View Record in Scopus
        Citing articles (9)
      • [9]
      • D.C. Wang, J.H. Wang, N. Jin, Q. Wang, C.J. Li, J.F. Huang, Y. Wang, F. Huang
      • ANN-based wheat biomass estimation using canopy hyperspectral vegetation indices
      • Trans. CSAE, Volume 24, 2008, pp. 196–201 (in Chinese with English abstract)
      • View Record in Scopus
        Citing articles (10)
      • [10]
      • J.G.P.W. Clevers, G.W.A.M. van der Heijden, S. Verzakov, M.E. Schaepman
      • Estimating grassland biomass using SVM band shaving of hyperspectral data
      • Photogramm. Eng. Remote. Sens., Volume 73, 2007, pp. 1141–1148
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (27)
      • [11]
      • X.L. Jin, W.Y. Diao, C.H. Xiao, F.Y. Wang, B. Chen, K.R. Wang, S.K. Li
      • Estimation of wheat agronomic parameters using new spectral indices
      • PLoS One, Volume 8, 2013, e72736
      • Full Text via CrossRef
      • [12]
      • R. Jhonnerie, V.P. Siregar, B. Nababan, L.B. Prasetyo, S. Wouthuyzen
      • Random forest classification for mangrove land cover mapping using Landsat5 TM and ALOS PALSAR imageries
      • Procedia Environ. Sci., Volume 24, 2015, pp. 215–221
      • Article
         | 
         PDF (1291 K)
         | 
        View Record in Scopus
        Citing articles (1)
      • [13]
      • I. Nitze, B. Barrett, F. Cawkwell
      • Temporal optimization of image acquisition for land cover classification with random forest and MODIS time-series
      • Int. J. Appl. Earth Obs. Geoinf., Volume 34, 2015, pp. 136–146
      • Article
         | 
         PDF (5209 K)
         | 
        View Record in Scopus
        Citing articles (8)
      • [14]
      • P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson
      • Random forests for land cover classification
      • Pattern Recogn. Lett., Volume 27, 2006, pp. 294–300
      • Article
         | 
         PDF (202 K)
         | 
        View Record in Scopus
        Citing articles (349)
      • [15]
      • A. Puissant, S. Rougier, A. Stumpf
      • Object-oriented mapping of urban trees using random forest classifiers
      • Int. J. Appl. Earth Obs. Geoinf., Volume 26, 2014, pp. 235–245
      • Article
         | 
         PDF (4869 K)
         | 
        View Record in Scopus
        Citing articles (12)
      • [16]
      • D.J. Booker, T.H. Snelder
      • Comparing methods for estimating flow duration curves at ungauged sites
      • J. Hydrol., Volume 434, 2012, pp. 78–84
      • [17]
      • M.L. Liu, X.N. Liu, D. Liu, C. Ding, J.L. Jiang
      • Multivariable integration method for estimating sea surface salinity in coastal waters from in situ data and remotely sensed data using random forest algorithm
      • Comput. Geosci., Volume 75, 2015, pp. 44–56
      • Article
         | 
         PDF (8254 K)
         | 
        View Record in Scopus
        Citing articles (4)
      • [18]
      • O. Mutanga, E. Adam, M. Azong Cho
      • High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
      • Int. J. Appl. Earth Obs. Geoinf., Volume 18, 2014, pp. 399–406
      • [19]
      • J.W. Rouse, R.H. Haas, J.A. Schell
      • Monitoring the Vernal Advancement of Retrogradation (Green Wave Effect) of Natural Vegetation
      • 1974, Remote Sensing Center, Texas A&M University College Station, USA
      • [20]
      • A.R. Huete
      • A soil vegetation adjusted index (SAVI)
      • Remote Sens. Environ., Volume 25, 1998, pp. 295–309
      • [21]
      • G. Rondeaux, M. Steven, F. Baret
      • Optimization of soil-adjusted vegetation indices
      • Remote Sens. Environ., Volume 55, 1996, pp. 95–107
      • Article
         | 
         PDF (1077 K)
         | 
        View Record in Scopus
        Citing articles (532)
      • [22]
      • T.D. Schleicher, W.C. Bausch, J.A. Delgado, P.D. Ayers
      • Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management, in: 2001 ASABE Annual International Meeting, St-Joseph, MI, USA. ASABE Paper No. 01–11151
      • 2001
      • [23]
      • A.A. Gitelson, Y. Kaufman, M.N. Merzlyak
      • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
      • Remote Sens. Environ., Volume 58, 1996, pp. 289–298
      • Article
         | 
         PDF (994 K)
         | 
        View Record in Scopus
        Citing articles (508)
      • [24]
      • J. Penuelas, I. Filella, J.A. Gamon
      • Assessment of photosynthetic radiation-use efficiency with spectral reflectance
      • New Phytol., Volume 131, 1995, pp. 291–296
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (291)
      • [25]
      • M.N. Merzlyak, A.A. Gitelson, O.B. Chivkunova, Y.R. Rakitin
      • Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening
      • Physiol. Plant., Volume 106, 1999, pp. 135–141
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (262)
      • [26]
      • F. Baret, G. Guyot
      • Potentials and limits of vegetation indices for LAI and APAR assessment
      • Remote Sens. Environ., Volume 35, 1991, pp. 161–173
      • Article
         | 
         PDF (1053 K)
         | 
        View Record in Scopus
        Citing articles (895)
      • [27]
      • A.A. Gitelson, Y. Zur, O.B. Chivkunova, M.N. Merzlyak
      • Assessing carotenoid content in plant leaves with reflectance spectroscopy
      • Photochem. Photobiol., Volume 75, 2002, pp. 272–281
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (172)
      • [28]
      • H.Q. Liu, A.R. Huete
      • A feedback based modification of the NDVI to minimize canopy background and atmospheric noise
      • IEEE Trans. Geosci. Remote Sens., Volume 33, 1995, pp. 457–465
      • View Record in Scopus
        Citing articles (246)
      • [29]
      • J.M. Chen
      • Evaluation of vegetation indices and modified simple ratio for boreal applications
      • Can. J. Remote. Sens., Volume 22, 1996, pp. 229–242
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (243)
      • [30]
      • N.S. Goel, W.H. Qin
      • Influences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR: a computer simulation
      • Remote Sens. Environ., Volume 10, 1994, pp. 309–347
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (77)
      • [31]
      • K. Wang, Z.Q. Shen, R.C. Wang
      • Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy
      • J. Zhejiang Agric. Univ., Volume 24, 1998, pp. 93–97
      • View Record in Scopus
        Citing articles (12)
      • [32]
      • N.H. Broge, E. Leblanc
      • Comparing prediction power and stability of broad band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
      • Remote Sens. Environ., Volume 76, 2000, pp. 156–172
      • View Record in Scopus
        Citing articles (9)
      • [33]
      • D. Haboudane, J.R. Miller, E. Pattey, P.J. Zarco-Tejada, I.B. Strachan
      • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture
      • Remote Sens. Environ., Volume 90, 2004, pp. 337–352
      • Article
         | 
         PDF (1140 K)
         | 
        View Record in Scopus
        Citing articles (604)
      • [34]
      • L. Breiman, J. Friedman, R.A. Olshen, C.J. Stone
      • Classification and Regression Trees, The Wadsworth Statistics/Probability Series
      • 1984, Wadsworth, Belmont, CA
      • [35]
      • J.R. Quinlan
      • C4.5 Programs for Machine Learning
      • 1993, Morgan Kaurmann, San Mateo, CA
      • [36]
      • V. Rodriguez-Galiano, M.P. Mendes, M.J. Garcia-Soldado, M. Chica-Olmo, L. Ribeiro
      • Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain)
      • Sci. Total Environ., Volume 476–477, 2014, pp. 189–206
      • Article
         | 
         PDF (2460 K)
         | 
        View Record in Scopus
        Citing articles (16)
      • [37]
      • A. Prasad, L. Iverson, A. Liaw
      • Newer classification and regression tree techniques bagging and random forests for ecological prediction
      • Ecosystems, Volume 9, 2006, pp. 181–199
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (543)
      • [38]
      • A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, L.G. Ferreira
      • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
      • Remote Sens. Environ., Volume 83, 2002, pp. 195–213
      • Article
         | 
         PDF (1343 K)
         | 
        View Record in Scopus
        Citing articles (2155)
      • [39]
      • F. Li, Y.X. Miao, S.D. Hennig, M.L. Gnyp, X.P. Chen, L.L. Jia, G. Bareth
      • Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages
      • Precis. Agric., Volume 11, 2010, pp. 335–357
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (47)
      • [40]
      • F. Li, B. Mistele, Y.C. Hu, X.L. Yue, Y.X. Miao, X.P. Chen, Z.L. Cui, Q.F. Meng, U. Schmidthalter
      • Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany
      • Field Crops Res., Volume 138, 2012, pp. 21–32
      • Article
         | 
         PDF (1900 K)
         | 
        View Record in Scopus
        Citing articles (17)
      • [41]
      • J.L. Hatfield, J.H. Prueger
      • Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices
      • Remote Sens., Volume 2, 2010, pp. 562–578
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (51)
      • [42]
      • V.N. Vapnik
      • The Nature of Statistical Learning Theory
      • 1995, Springer-Verlag, New York
      • [43]
      • S.O. Haykin
      • Neural Networks: A Comprehensive Foundation
      • second ed., 1999, Prentice Hall
      • [44]
      • J. Verrelst, J. Muñoz, L. Alonso, J. Delegido, J.P. Rivera, G. Camps-Valls, J. Moreno
      • Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
      • Remote Sens. Environ., Volume 118, 2012, pp. 127–139
      • Article
         | 
         PDF (2241 K)
         | 
        View Record in Scopus
        Citing articles (51)
      • [45]
      • F. Baret, S. Buis
      • Estimating canopy characteristics from remote sensing observations: review of methods and associated problems
      • Advances in Land Remote Sensing: System, Modeling, Inversion and Application, S. Liang, 2008, Springer, The Netherlands, pp. 173–201
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (51)
      • [46]
      • R.D. Cutler, T.C. Edwards, K.H. Beard, K.T. Cutler, H.J. Gibson, J.J. Lawler
      • Random forests for classification in ecology
      • Ecology, Volume 88, 2007, pp. 2783–2792
      • [47]
      • S. Fukuda, E. Yasunaga, M. Nagle, K. Yuge, V. Sardsud, W. Spreer, J. Müller
      • Modelling the relationship between peel colour and the quality of fresh mango fruit using random forests
      • J. Food Eng., Volume 131, 2014, pp. 7–17
      • Article
         | 
         PDF (1153 K)
         | 
        View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (6)
      • [48]
      • J. Bendig, K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, M.L. Gnyp, G. Bareth
      • Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley
      • Int. J. Appl. Earth Obs. Geoinf., Volume 39, 2015, pp. 79–87
      • Article
         | 
         PDF (2399 K)
         | 
        View Record in Scopus
        Citing articles (6)
      • [49]
      • K. Prabhakara, W.D. Hively, G.W. McCarty
      • Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in maryland, United States
      • Int. J. Appl. Earth Obs. Geoinf., Volume 39, 2015, pp. 88–102
      • Article
         | 
         PDF (5726 K)
         | 
        View Record in Scopus
        Citing articles (1)
      • [50]
      • X.L. Jin, K.R. Wang, C.H. Xiao, W.Y. Diao, F.Y. Wang, B. Chen, S.K. Li
      • Comparison of two methods for estimation of leaf total chlorophyll content using remote sensing in wheat
      • Field Crops Res., Volume 135, 2012, pp. 24–29
      • Article
         | 
         PDF (376 K)
         | 
        View Record in Scopus
        Citing articles (8)
      • [51]
      • P.F.C. Monteiro, R.A. Filho, A.C. Xavier, R.O.C. Monteiro
      • Assessing biophysical variable parameters of bean crops with hyperspectral measurements
      • Sci. Agric., Volume 69, 2012, pp. 87–94
      • View Record in Scopus
        Citing articles (4)
      • [52]
      • P.M. Hansen, J.K. Schjoerring
      • Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
      • Remote Sens. Environ., Volume 86, 2003, pp. 542–553
      • Article
         | 
         PDF (681 K)
         | 
        View Record in Scopus
        Citing articles (449)
      • [53]
      • X.C. Li, X.G. Xu, Y.S. Bao, W.J. Huang, J.H. Luo, Y.Y. Dong, X.Y. Song, J.H. Wang
      • Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method
      • Sci. Agric. Sin., Volume 45, 2012, pp. 3486–3496 (in Chinese with English abstract)
      • View Record in Scopus
        Citing articles (1)
      • [54]
      • E. Boegh, R. Houborg, J. Bienkowski, C.F. Braban, T. Dalgaard, N. van Dijk, U. Dragosits, E. Holmes
      • Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop and grasslands in five European landscapes
      • Biogeosciences, Volume 10, 2013, pp. 6279–6307
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (5)
      • [55]
      • J.U.H. Eitel, T.S. Magney, L.A. Vierling, T.T. Brown, D.R. Huggins
      • LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status
      • Field Crops Res., Volume 159, 2014, pp. 21–32
      • Article
         | 
         PDF (2712 K)
         | 
        View Record in Scopus
        Citing articles (12)
    • Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.
    • ⁎ 
      Corresponding author.
    Open access funded by Institute of Crop Sciences

    For further details log on website :
    at June 29, 2016
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ▼  June (1003)
        • ►  Jun 30 (29)
        • ▼  Jun 29 (43)
          • New 'Artificial Synapses' Could Let Supercomputers...
          • Gluten Triggers Strange Delusions in Woman with Ce...
          • Cold-setting starch adhesive
          • Estimation of biomass in wheat using random forest...
          • Ethylene response factor BnERF2-like (ERF2.4) from...
          • What Is Turmeric & Where Do You Get It?
          • Intermittent Fasting & Bodybuilding
          • What Are the Causes of Stress Among College Sudents?
          • A List of the Benefits of Cardiovascular Endurance
          • The Abs Diet for Breakfast
          • FARM
          • ENERGY CROP
          • CROP-LIEN SYSTEM
          • CROP YIELD
          • CROP WILD RELATIVE
          • How to Take Vitamin B-12 at Night
          • Does Going to Sleep Earlier Make You Feel Better?
          • Genius: Can Anybody Be One?
          • 'First Night' Insomnia: Why You Don't Sleep Well i...
          • Structure and linear viscoelasticity of polymer na...
          • Silica encapsulation by miniemulsion polymerizatio...
          • Delayed gelling starch compositions
          • SHEAR THICKENING PREGELATINIZED STARCH
          • Molecular characterization and expression analysis...
          • Metabolite variation in hybrid corn grain from a l...
          • How Much Curcumin Is There in Powdered Turmeric?
          • Recommended Dosages for Turmeric
          • What Are the Benefits of Turmeric Capsules?
          • Human Brain: Facts, Functions & Anatomy
          • Why You Forget: 5 Strange Facts About Memory
          • Brains of Introverts Reveal Why They Prefer Being ...
          • CROP WEED
          • CROP RESIDUE
          • CROP DIVERSITY
          • CROP DESTRUCTION
          • COVER CROP
          • CATCH CROP
          • BUMPER CROP
          • KHARIF CROP
          • Phytohormones and their metabolic engineering for ...
          • SHEAR THICKENING PREGELATINIZED STARCH
          • Processable conductive graphene/polyethylene nanoc...
          • Meditation Techniques for Teens
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.