Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Thursday, 7 July 2016

Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

Published Date
March 2015, Vol.22(2):123–131, doi:10.1016/j.sjbs.2014.12.001
Open Access, Creative Commons license, Funding information
Review
Title 
Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  • Author 
  • Pooja Shrivastava ,
  • Rajesh Kumar
  • Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
Received 8 September 2014. Revised 1 December 2014. Accepted 2 December 2014. Available online 9 December 2014.

Abstract
Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.

Keywords

  • Salinity
  • Salt-tolerant
  • PGPR
  • Microorganisms


  • 1 Introduction

    The beginning of 21st century is marked by global scarcity of water resources, environmental pollution and increased salinization of soil and water. Increasing human population and reduction in land available for cultivation are two threats for agricultural sustainability (Shahbaz and Ashraf, 2013). Various environmental stresses viz. high winds, extreme temperatures, soil salinity, drought and flood have affected the production and cultivation of agricultural crops, among these soil salinity is one of the most devastating environmental stresses, which causes major reductions in cultivated land area, crop productivity and quality (Yamaguchi and Blumwald, 2005and Shahbaz and Ashraf, 2013). A saline soil is generally defined as one in which the electrical conductivity (EC) of the saturation extract (ECe) in the root zone exceeds 4 dS m−1 (approximately 40 mM NaCl) at 25 °C and has an exchangeable sodium of 15%. The yield of most crop plants is reduced at this ECe, though many crops exhibit yield reduction at lower ECes (Munns, 2005 and Jamil et al., 2011). It has been estimated that worldwide 20% of total cultivated and 33% of irrigated agricultural lands are afflicted by high salinity. Furthermore, the salinized areas are increasing at a rate of 10% annually for various reasons, including low precipitation, high surface evaporation, weathering of native rocks, irrigation with saline water, and poor cultural practices. It has been estimated that more than 50% of the arable land would be salinized by the year 2050 (Jamil et al., 2011).
    Water and soil management practices have facilitated agricultural production on soil marginalized by salinity but an additional gain from these approaches seems problematic (Zahir et al., 2008). Impacted soils are a major limiting production factor worldwide for every major crop (Bacilio et al., 2004 and Shannon and Grieve, 1999). A significant increase (an estimated 50%) in grain yields of major crop plants such as rice (Oryza sativa L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) is required to fulfill the food supply requirements for the projected population by 2050 (Godfray et al., 2010). The urgency of feeding the world’s growing population while combating soil pollution, salinization, and desertification has given plant and soil productivity research vital importance. Under such circumstances, it requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of plant roots and soil microorganisms (Lugtenberg et al., 2002).
    Salt stressed soils are known to suppress the growth of plants (Paul, 2012). Plants in their natural environment are colonized both by endocellular and intracellular microorganisms (Gray and Smith, 2005). Rhizosphere microorganisms, particularly beneficial bacteria and fungi, can improve plant performance under stress environments and, consequently, enhance yield both directly and indirectly (Dimkpa et al., 2009). Some plant growth-promoting rhizobacteria (PGPR) may exert a direct stimulation on plant growth and development by providing plants with fixed nitrogen, phytohormones, iron that has been sequestered by bacterial siderophores, and soluble phosphate (Hayat et al., 2010). Others do this indirectly by protecting the plant against soil-borne diseases, most of which are caused by pathogenic fungi (Lutgtenberg and Kamilova, 2009). The problem of soil salinization is a scourge for agricultural productivity worldwide. Crops grown on saline soils suffer on an account of high osmotic stress, nutritional disorders and toxicities, poor soil physical conditions and reduced crop productivity. The present review focuses on the enhancement of productivity under stressed conditions and increased resistance of plants against salinity stress by application of plant growth promoting microorganisms.

    2 Problem of soil salinization

    Soil salinity is an enormous problem for agriculture under irrigation. In the hot and dry regions of the world the soils are frequently saline with low agricultural potential. In these areas most crops are grown under irrigation, and to exacerbate the problem, inadequate irrigation management leads to secondary salinization that affects 20% of irrigated land worldwide (Glick et al., 2007). Irrigated agriculture is a major human activity, which often leads to secondary salinization of land and water resources in arid and semi-arid conditions. Salts in the soil occur as ions (electrically charged forms of atoms or compounds). Ions are released from weathering minerals in the soil. They may also be applied through irrigation water or as fertilizers, or sometimes migrate upward in the soil from shallow groundwater. When precipitation is insufficient to leach ions from the soil profile, salts accumulate in the soil resulting soil salinity (Blaylock et al., 1994). All soils contain some water-soluble salts. Plants absorb essential nutrients in the form of soluble salts, but excessive accumulation strongly suppresses the plant growth. During the last century, physical, chemical and/or biological land degradation processes have resulted in serious consequences to global natural resources (e.g. compaction, inorganic/organic contamination, and diminished microbial activity/diversity). The area under the affected soils continues to increase each year due to introduction of irrigation in new areas (Patel et al., 2011).
    Salinization is recognized as the main threats to environmental resources and human health in many countries, affecting almost 1 billion ha worldwide/globally representing about 7% of earth’s continental extent, approximately 10 times the size of a country like Venezuela or 20 times the size of France (Metternicht and Zinck, 2003 and Yensen, 2008). It has been estimated that an approximate area of 7 million hectares of land is covered by saline soil in India (Patel et al., 2011). Most of which occurs in indogangetic plane that covers the states of Punjab, Haryana, U.P. Bihar and some parts of Rajasthan. Arid tracts of Gujarat and Rajasthan and semi-arid tracts of Gujarat, Madhya Pradesh, Maharashtra, Karnataka and Andhra Pradesh are also largely affected by saline lands.

    3 Impact of salinity on plants

    Agricultural crops exhibit a spectrum of responses under salt stress. Salinity not only decreases the agricultural production of most crops, but also, effects soil physicochemical properties, and ecological balance of the area. The impacts of salinity include—low agricultural productivity, low economic returns and soil erosions, (Hu and Schmidhalter, 2002). Salinity effects are the results of complex interactions among morphological, physiological, and biochemical processes including seed germination, plant growth, and water and nutrient uptake (Akbarimoghaddam et al., 2011 and Singh and Chatrath, 2001). Salinity affects almost all aspects of plant development including: germination, vegetative growth and reproductive development. Soil salinity imposes ion toxicity, osmotic stress, nutrient (N, Ca, K, P, Fe, Zn) deficiency and oxidative stress on plants, and thus limits water uptake from soil. Soil salinity significantly reduces plant phosphorus (P) uptake because phosphate ions precipitate with Ca ions (Bano and Fatima, 2009). Some elements, such as sodium, chlorine, and boron, have specific toxic effects on plants. Excessive accumulation of sodium in cell walls can rapidly lead to osmotic stress and cell death (Munns, 2002). Plants sensitive to these elements may be affected at relatively low salt concentrations if the soil contains enough of the toxic element. Because many salts are also plant nutrients, high salt levels in the soil can upset the nutrient balance in the plant or interfere with the uptake of some nutrients (Blaylock et al., 1994). Salinity also affects photosynthesis mainly through a reduction in leaf area, chlorophyll content and stomatal conductance, and to a lesser extent through a decrease in photosystem II efficiency (Netondo et al., 2004). Salinity adversely affects reproductive development by inhabiting microsporogenesis and stamen filament elongation, enhancing programed cell death in some tissue types, ovule abortion and senescence of fertilized embryos. The saline growth medium causes many adverse effects on plant growth, due to a low osmotic potential of soil solution (osmotic stress), specific ion effects (salt stress), nutritional imbalances, or a combination of these factors (Ashraf, 2004). All these factors cause adverse effects on plant growth and development at physiological and biochemical levels (Munns and James, 2003), and at the molecular level (Tester and Davenport, 2003).
    In order to assess the tolerance of plants to salinity stress, growth or survival of the plant is measured because it integrates the up- or down-regulation of many physiological mechanisms occurring within the plant. Osmotic balance is essential for plants growing in saline medium. Failure of this balance results in loss of turgidity, cell dehydration and ultimately, death of cells. On the other hand, adverse effects of salinity on plant growth may also result from impairment of the supply of photosynthetic assimilates or hormones to the growing tissues (Ashraf, 2004). Ion toxicity is the result of replacement of K+ by Na+ in biochemical reactions, and Na+and Cl− induced conformational changes in proteins. For several enzymes, K+ acts as cofactor and cannot be substituted by Na+. High K+ concentration is also required for binding tRNA to ribosomes and thus protein synthesis (Zhu, 2002). Ion toxicity and osmotic stress cause metabolic imbalance, which in turn leads to oxidative stress (Chinnusamy et al., 2006). The adverse effects of salinity on plant development are more profound during the reproductive phase. Wheat plants stressed at 100–175 mM NaCl showed a significant reduction in spikelets per spike, delayed spike emergence and reduced fertility, which results in poor grain yields. However, Na+ and Cl−concentrations in the shoot apex of these wheat plants were below 50 and 30 mM, respectively, which is too low to limit metabolic reactions (Munns and Rawson, 1999). Hence, the adverse effects of salinity may be attributed to the salt-stress effect on the cell cycle and differentiation. Salinity arrests the cell cycle transiently by reducing the expression and activity of cyclins and cyclin-dependent kinases that results in fewer cells in the meristem, thus limiting growth. The activity of cyclin-dependent kinase is diminished also by post-translational inhibition during salt stress. Recent reports also show that salinity adversely affects plant growth and development, hindering seed germination, seedling growth, enzyme activity (Seckin et al., 2009), DNA, RNA, protein synthesis and mitosis (Tabur and Demir, 2010 and Javid et al., 2011).

    4 Amelioration of salinity

    Salinization can be restricted by leaching of salt from root zone, changed farm management practices and use of salt tolerant plants. Irrigated agriculture can be sustained by better irrigation practices such as adoption of partial root zone drying methodology, and drip or micro-jet irrigation to optimize use of water. The spread of dry land salinity can be contained by reducing the amount of water passing beyond the roots. This can be done by re-introducing deep rooted perennial plants that continue to grow and use water during the seasons that do not support annual crop plants. This may restore the balance between rainfall and water use, thus preventing rising water tables and the movement of salt to the soil surface (Manchanda and Garg, 2008). Farming systems can change to incorporate perennials in rotation with annual crops (phase farming), in mixed plantings (alley farming, intercropping), or in site-specific plantings (precision farming) (Munns et al., 2002). Although the use of these approaches to sustainable management can ameliorate yield reduction under salinity stress, implementation is often limited because of cost and availability of good water quality or water resource. Evolving efficient, low cost, easily adaptable methods for the abiotic stress management is a major challenge. Worldwide, extensive research is being carried out, to develop strategies to cope with abiotic stresses, through development of salt and drought tolerant varieties, shifting the crop calendars, resource management practices etc. (Venkateswarlu and Shanker, 2009) as shown in Fig. 1.
    Figure 1. Different approaches for improvement of salt tolerance in agricultural crops.

    5 Use of salt tolerant crops and transgenics

    Using the salt-tolerant crops is one of the most important strategies to solve the problem of salinity. Tolerance will be required for the “de-watering” species, but also for the annual crops to follow, as salt will be left in the soil when the water table is lowered. Salt tolerance in crops will also allow the more effective use of poor quality irrigation water. To increase the plant salt-tolerance, there is a need for understanding the mechanisms of salt limitation on plant growth and the mechanism of salt tolerance at the whole-plant, organelle, and molecular levels. Under saline conditions, there is a change in the pattern of gene expression, and both qualitative and quantitative changes in protein synthesis. Although it is generally agreed that salt stress brings about quantitative changes in protein synthesis, there is some controversy as to whether salinity activates specialized genes that are involved in salt stress. Salt tolerance does not appear to be conferred by unique gene(s) (Manchanda and Garg, 2008). When a plant is subjected to abiotic stress, a number of genes are turned on, resulting in increased levels of several metabolites and proteins, some of which may be responsible for conferring a certain degree of protection to these stresses (Bhatnagar-Mathur et al., 2008). Efforts to improve crop performance by transgenic approach under environmental stresses have not been that fruitful because the fundamental mechanisms of stress tolerance in plants remain to be completely understood.
    Development of salt-tolerant crops has been a major objective of plant breeding programs for decades in order to maintain crop productivity in semiarid and saline lands. Although several salt-tolerant varieties have been released, the overall progress of traditional breeding has been slow and has not been successful as only few major determinant genetic traits of salt tolerance have been identified (Schubert et al., 2009 and Dodd and Perez-Alfocea, 2012). 25 years ago Epstein et al. (1980)described the technical and biological constraints to solving the problem of salinity. Although there has been some success with technical solutions to the problem, the biological solutions have been more difficult to develop because a pre-requisite for the development of salt tolerant crops is the identification of key genetic determinants of stress tolerance. The existence of salt-tolerant plants (halophytes) and differences in salt tolerance between genotypes within salt-sensitive plant species (glycophytes) indicates that there is a genetic basis to salt response (Yamaguchi and Blumwald, 2005). Although a lot of approaches have been done for development of salt tolerant plants by transgenics complete success is not achieved yet. The assessment of salt tolerance in transgenic experiments has been mostly carried out using a limited number of seedlings or mature plants in laboratory experiments. In most of the cases, the experiments were carried out in greenhouse conditions where the plants were not exposed to those conditions that prevail in high-salinity soils (e.g. alkaline soil pH, high diurnal temperatures, low humidity, and presence of other sodic salts and elevated concentrations of selenium and/or boron). The salt tolerance of the plants in the field needs to be evaluated and, more importantly, salt tolerance needs to be evaluated as a function of yield. The evaluation of field performance under salt stress is difficult because of the variability of salt levels in field conditions (Richards, 1983) and the potential for interactions with other environmental factors, including soil fertility, temperature, light intensity and water loss due to transpiration. Evaluating tolerance is also made more complex because of variation in sensitivity to salt during the life cycle. For example, in rice, grain yield is much more affected by salinity than in vegetative growth (Khatun and Flowers, 1995). In tomato, the ability of the plants to germinate under conditions of high salinity is not always correlated with the ability of the plant to grow under salt stress because both are controlled by different mechanisms (Foolad and Lin, 1997), although some genotypes might display similar tolerance at germination and during vegetative growth (Foolad and Chen, 1999). Therefore, the assessment of stress tolerance in the laboratory often has little correlation to tolerance in the field. Although there have been many successes in developing stress-tolerant transgenics in model plants such as tobacco, Arabidopsisor rice (Grover et al., 2003), there is an urgent need to test these successes in other crops. There are several technical and financial challenges associated with transforming many of the crop plants, particularly the monocots. First, transformation of any monocot other than rice is still not routine and to develop a series of independent homozygous lines is costly, both in terms of money and time. Second, the stress tolerance screens will need to include a field component because many of the stress tolerance assays used by basic researchers involve using nutrient-rich media (which in some cases include sucrose). This type of screen is unlikely to have a relationship to field performance. Third, because saline soils are often complex and can include NaCl, CaCl2, CaSO4, Na2SO4, high boron concentrations and alkaline pH, plants that show particular promise will eventually have to be tested in all these environments (Joseph and Jini, 2010).

    6 Microbes: abiotic stress alleviation tool in crops

    Several strategies have been developed in order to decrease the toxic effects caused by high salinity on plant growth, including plant genetic engineering (Wang et al., 2003), and recently the use of plant growth-promoting bacteria (PGPB) (Dimkpa et al., 2009). The role of microorganisms in plant growth promotion, nutrient management and disease control is well known and well established. These beneficial microorganisms colonize the rhizosphere/endorhizosphere of plants and promote growth of the plants through various direct and indirect mechanisms (Nia et al., 2012and Ramadoss et al., 2013). Previous studies suggest that utilization of PGPB has become a promising alternative to alleviate plant stress caused by salinity (Yao et al., 2010) and the role of microbes in the management of biotic and abiotic stresses is gaining importance. The subject of PGPR elicited tolerance to abiotic stresses has been reviewed recently (Dodd and Perez-Alfocea, 2012 and Yang et al., 2009).
    The term Induced Systemic Tolerance (IST) has been proposed for PGPR-induced physical and chemical changes that result in enhanced tolerance to abiotic stress. PGPR facilitate plant growth indirectly by reducing plant pathogens, or directly by facilitating the nutrient uptake through phytohormone production (e.g. auxin, cytokinin and gibberellins), by enzymatic lowering of plant ethylene levels and/or by production of siderophores (Kohler et al., 2006). It has been demonstrated that inoculations with AM (arbuscular mycorrhizal) fungi improves plant growth under salt stress (Cho et al., 2006). Kohler et al., 2006 demonstrated the beneficial effect of PGPR Pseudomonas mendocina strains on stabilization of soil aggregate. The three PGPR isolates P. alcaligenes PsA15, Bacillus polymyxa BcP26 and Mycobacterium phlei MbP18 were able to tolerate high temperatures and salt concentrations and thus confer on them potential competitive advantage to survive in arid and saline soils such as calcisol (Egamberdiyeva, 2007). Kohler et al., 2009 investigated the influence of inoculation with a PGPR, P. mendocina, alone or in combination with an AM fungus, Glomus intraradices or G. mosseae on growth and nutrient uptake and other physiological activities of Lactuca sativa affected by salt stress. The plants inoculated with P. mendocina had significantly greater shoot biomass than the controls and it is suggested that inoculation with selected PGPR could be an effective tool for alleviating salinity stress in salt sensitive plants. Bacteria isolated from different stressed habitats possess stress tolerance capacity along with the plant growth-promoting traits and therefore are potential candidates for seed bacterization. When inoculated with these isolates, plants show enhanced root and shoot length, biomass, and biochemical levels such as chlorophyll, carotenoids, and protein (Tiwari et al., 2011). Investigations on interaction of PGPR with other microbes and their effect on the physiological response of crop plants under different soil salinity regimes are still in incipient stage. Inoculations with selected PGPR and other microbes could serve as the potential tool for alleviating salinity stress in salt sensitive crops. Therefore, an extensive investigation is needed in this area, and the use of PGPR and other symbiotic microorganisms, can be useful in developing strategies to facilitate sustainable agriculture in saline soils.

    7 Alleviation of abiotic stress in plants by rhizospheric bacteria

    Besides developing mechanisms for stress tolerance, microorganisms can also impart some degree of tolerance to plants towards abiotic stresses like drought, chilling injury, salinity, metal toxicity and high temperature. In the last decade, bacteria belonging to different genera including Rhizobium, Bacillus, Pseudomonas, Pantoea, Paenibacillus, Burkholderia, Achromobacter, Azospirillum, Microbacterium, Methylobacterium, Variovorax, Enterobacter etc. have been reported to provide tolerance to host plants under different abiotic stress environments (Grover et al., 2011). Use of these microorganisms per se can alleviate stresses in agriculture thus opening a new and emerging application of microorganisms. Microbial elicited stress tolerance in plants may be due to a variety of mechanisms proposed from time to time based on studies done. Production of indole acetic acid, gibberellins and some unknown determinants by PGPR, results in increased root length, root surface area and number of root tips, leading to an enhanced uptake of nutrients thereby improving plant health under stress conditions (Egamberdieva and Kucharova, 2009). Plant growth promoting bacteria have been found to improve growth of tomato, pepper, canola, bean and lettuce under saline conditions (Barassi et al., 2006 and Yildirim and Taylor, 2005).
    Some PGPR strains produce cytokinin and antioxidants, which result in abscisic acid (ABA) accumulation and degradation of reactive oxygen species. High activities of antioxidant enzymes are linked with oxidative stress tolerance (Stajner et al., 1997). Another PGPR strain, Achromobacter piechaudii ARV8 which produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, conferred IST against drought and salt in pepper and tomato (Mayak et al., 2004). Many aspects of plant life are regulated by ethylene levels and the biosynthesis of ethylene is subjected to tight regulation, involving transcriptional and post-transcriptional factors regulated by environmental cues, including biotic and abiotic stresses (Hardoim et al., 2008). Under stress conditions, the plant hormone ethylene endogenously regulates plant homoeostasis and results in reduced root and shoot growth. In the presence of ACC deaminase producing bacteria, plant ACC is sequestered and degraded by bacterial cells to supply nitrogen and energy. Furthermore, by removing ACC, the bacteria reduce the deleterious effect of ethylene, ameliorating stress and promoting plant growth (Glick, 2007). The complex and dynamic interactions among microorganisms, roots, soil and water in the rhizosphere induce changes in physicochemical and structural properties of the soil (Haynes and Swift, 1990). Microbial polysaccharides can bind soil particles to form microaggregates and macroaggregates. Plant roots and fungal hyphae fit in the pores between microaggregates and thus stabilize macroaggregates. Plants treated with Exo-poly saccharides (EPS) producing bacteria display increased resistance to water and salinity stress due to improved soil structure (Sandhya et al., 2009). EPS can also bind to cations including Na+ thus making it unavailable to plants under saline conditions. Chen et al., 2007 correlated proline accumulation with drought and salt tolerance in plants. Introduction of proBA genes derived from B. subtilis into A. thaliana resulted in production of higher levels of free proline resulting in increased tolerance to osmotic stress in the transgenic plants. Increased production of proline along with decreased electrolyte leakage, maintenance of relative water content of leaves and selective uptake of K ions resulted in salt tolerance in Zea mays coinoculated with Rhizobium and Pseudomonas (Bano and Fatima, 2009). Rhizobacteria inhabiting the sites exposed to frequent stress conditions, are likely to be more adaptive or tolerant and may serve as better plant growth promoters under stressful conditions. Moreover Yao et al., 2010reported that inoculation with P. putida Rs 198 promoted cotton growth and germination under conditions of salt stress. Tank and Saraf (2010) showed that PGPRs which are able to solubilize phosphate, produce phytohormones and siderophores in salt condition promote growth of tomato plants under 2% NaCl stress.
    In a study carried out by Naz et al., 2009, it was shown that strains isolated from Khewra salt range of Pakistan exhibited their tolerance when tested on saline media simulated by rhizosphere soil filtrate. Noteworthy, the isolates produced ABA in a concentration much higher than that of previous reports. Furthermore production of proline, shoot/root length, and dry weight was also higher in soybean plants inoculated with these isolates under induced salt stress. Likewise Upadhyay et al., 2011 studied the impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions and reported that co-inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth with an increase in dry biomass, total soluble sugars and proline content. Jha et al., 2011 reported that P. pseudoalcaligenes, an endophytic bacterium in combination with a rhizospheric B. pumilus in paddy was able to protect the plant from abiotic stress by induction of osmoprotectant and antioxidant proteins than by the rhizospheric or endophytic bacteria alone at early stages of growth. Plants inoculated with endophytic bacterium P. pseudoalcaligenes showed a significantly higher concentration of glycine betaine-like quaternary compounds and higher shoot biomass at lower salinity levels. While at higher salinity levels, a mixture of both P. pseudoalcaligenes and B. pumilus showed better response against the adverse effects of salinity. Nia et al., 2012 studied the effect of inoculation of Azospirillumstrains isolated from saline or non-saline soil on yield and yield components of wheat in salinity and they observed that inoculation with the two isolates increased salinity tolerance of wheat plants; the saline-adapted isolate significantly increased shoot dry weight and grain yield under severe water salinity. The component of grain yield most affected by inoculation was grains per plant. Plants inoculated with saline-adapted Azospirillum strains had higher N concentrations at all water salinity levels.
    Sadeghi et al., 2012 studied the plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions and reported increases in growth and development of wheat plant. They observed significant increases in germination rate, percentage and uniformity, shoot length and dry weight compared to the control. Applying the bacterial inocula increased the concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil and thus concluded that Streptomyces isolate has potential to be utilized as biofertilizers in saline soils. More recently Ramadoss et al., 2013 studied the effect of five plant growth promoting halotolerant bacteria on wheat growth and found that inoculation of those halotolerant bacterial strains to ameliorate salt stress (80, 160 and 320 mM) in wheat seedlings produced an increase in root length of 71.7% in comparison with uninoculated positive controls. In particular, Hallobacillus sp. and B. halodenitrificansshowed more than 90% increase in root elongation and 17.4% increase in dry weight when compared to uninoculated wheat seedlings at 320 mM NaCl stress indicating a significant reduction of the deleterious effects of NaCl. These results indicate that halotolerant bacteria isolated from saline environments have potential to enhance plant growth under saline stress through direct or indirect mechanisms and would be most appropriate as bioinoculants under such conditions. The isolation of indigenous microorganisms from the stress affected soils and screening on the basis of their stress tolerance and PGP traits may be useful in the rapid selection of efficient strains that could be used as bioinoculants for stressed crops. Some of the advances and researches carried out in evaluating role of rhizobacteria as salinity stress remediators have been summarized in Table 1.
    Table 1. Role of plant growth promoting bacteria in salinity stress alleviation in plants.
    Plant growth promoting bacterial speciesCrop plantEffectReferences
    Achromobacter piechaudiiTomato (Lycopersicon esculentum)Reduced levels of ethylene and improved plant growthMayak et al. (2004)
    AzospirillumMaize (Zea mays)Restricted Na + uptake and increased K + and Ca2 + uptake along with increased nitrate reductase and nitrogenase activityHamdia et al. (2004)
    Aeromonas hydrophila/caviae Bacillus insolitus, Bacillus sp.Wheat (Triticum aestivum)Exopolysaccharide productionAshraf (2004)
    Pseudomonas syringae, Pseudomonas fluorescens, Enterobacter aerogenesMaize (Zea mays)ACC deaminase activityNadeem et al. (2007)
    Pseudomonas fluorescensGroundnut (Arachis hypogea)Enhanced ACC deaminase activitySaravanakumar and Samiyappan (2007)
    Bacillus subtilisArabidopsis thalianaTissue specific regulation of sodium transporter HKT1Zhang et al. (2008)
    Pseudomonas mendocinaLettuce (L. sativa L. cv. Tafalla)ACC deaminase activity and enhanced uptake of essential nutrientsKohler et al. (2009)
    Rhizobium, PseudomonasMaizeDecreased electrolyte leakage and, increase in proline production, maintenance of relative water content of leaves, and selective uptake of K ionBano and Fatima (2009)
    Pseudomonas pseudoalcaligenes, Bacillus pumilusRice (Oryza sativa)Increased concentration of glycine betaine (compatible solute)Jha et al. (2011)
    Pseudomonas putida Rs-198CottonIncrease the absorption of the Mg2+, K+ and Ca2+and decrease the uptake of the Na2+from the soilYao et al. (2010)
    PGPR (Mk1, Pseudomonas syringae; Mk20, Pseudomonas fluorescens; and Mk25, Pseudomonas fluorescensbiotype G) and Rhizobium phaseolistrains M1, M6, and M9Mung beanACC deaminase activity and improvement in growth and nodulation in mung beanAhmad et al. (2011)
    Raoultella planticola Rs-2CottonACC deaminase activityWu et al. (2012)
    Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11)Groundnut (Arachis hypogaea L.)High K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen contentShukla et al. (2012)
    Rhizobium phaseoli and PGPR (Pseudomonas syringae, Mk1; Pseudomonas fluorescens, Mk20 and Pseudomonas fluorescens Biotype G, Mk25)Mung bean (Vigna radiataL.)ACC deaminase activity and increased water use efficiencyAhmad et al. (2012)
    Rhizobium and PseudomonasMung bean (Vigna radiataL.)IAA production and ACC deaminase activityAhmad et al. (2013)
    Pseudomonas putida, Enterobacter cloacae, Serratia ficaria, and Pseudomonas fluorescensWheatEnhanced germination percentage, germination rate, and index and improved the nutrient status of the wheat plantsNadeem et al. (2013)
    Pseudomonas pseudoalcaligenes and Bacillus pumilusSalt sensitive rice GJ-17Reduce lipid peroxidation and superoxide dismutase activityJha and Subramanian, 2014
    Acinetobacter spp. and Pseudomonas sp.Barley and oatsProduction of ACC deaminase and IAAChang et al. (2014)
    Streptomyces sp. strain PGPA39‘Micro tom’ tomatoACC deaminase activity and IAA production and phosphate solubilizationPalaniyandi et al. (2014)

    8 Conclusion

    An ideal sustainable agricultural system is one which maintains and improves human health, benefits producers and consumers both economically and spiritually, protects the environment, and produces enough food for an increasing world population. One of the most important constraints to agricultural production in world is abiotic stress conditions prevailing in the environment. Plant-associated microorganisms can play an important role in conferring resistance to abiotic stresses. These organisms could include rhizoplane, rhizosphere and endophytic bacteria and symbiotic fungi and operate through a variety of mechanisms like triggering osmotic response, providing growth hormones and nutrients, acting as biocontrol agents and induction of novel genes in plants. The development of stress tolerant crop varieties through genetic engineering and plant breeding is essential but a long drawn and expensive process, whereas microbial inoculation to alleviate stresses in plants could be a more cost effective environmental friendly option which could be available in a shorter time frame. Taking the current leads available, concerted future research is needed in this area, particularly on field evaluation and application of potential organisms as biofertilizers in stressed soil.

    References

      • Ahmad et al., 2011
      • M. Ahmad, Zahir A. Zahir, H. Naeem Asghar, M. Asghar
      • Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
      • Can. J. Microbiol., Volume 57, Issue 7, 2011, pp. 578–589
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (39)
      • Ahmad et al., 2012
      • M. Ahmad, Z.A. Zahir, H.N. Asghar, M. Arshad
      • The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions
      • Ann. Microbiol., Volume 62, 2012, pp. 1321–1330
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (13)
      • Ahmad et al., 2013
      • M. Ahmad, Zahir A. Zahir, Farheen Nazli, Fareeha Akram, Khalid M. Muhammad Arshad
      • Effectiveness of halo-tolerant, auxin producing pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.)
      • Braz. J. Microbiol., Volume 44, Issue 4, 2013, pp. 1341–1348
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (5)
      • Akbarimoghaddam et al., 2011
      • H. Akbarimoghaddam, M. Galavi, A. Ghanbari, N. Panjehkeh
      • Salinity effects on seed germination and seedling growth of bread wheat cultivars
      • Trakia J. Sci., Volume 9, Issue 1, 2011, pp. 43–50
      • View Record in Scopus
        Citing articles (13)
      • Ashraf, 2004
      • M. Ashraf
      • Some important physiological selection criteria for salt tolerance in plants
      • Flora, Volume 199, 2004, pp. 361–376
      • Article
         | 
         PDF (155 K)
         | 
        View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (340)
      • Bacilio et al., 2004
      • M. Bacilio, H. Rodriguez, M. Moreno, Juan-Pablo Hernandez, Y. Bashan
      • Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum
      • Biol. Fertility Soils, Volume 40, 2004, pp. 188–193
      • View Record in Scopus
        Citing articles (76)
      • Bano and Fatima, 2009
      • A. Bano, M. Fatima
      • Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas
      • Biol. Fertility Soils, Volume 45, 2009, pp. 405–413
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (47)
      • Barassi et al., 2006
      • C.A. Barassi, G. Ayrault, C.M. Creus, R.J. Sueldo, M.T. Sobero
      • Seed inoculation with Azospirillum mitigates NaCl effects on lettuce
      • Sci. Horticulturae (Amsterdam), Volume 109, 2006, pp. 8–14
      • Article
         | 
         PDF (302 K)
         | 
        View Record in Scopus
        Citing articles (65)
      • Bhatnagar-Mathur et al., 2008
      • P. Bhatnagar-Mathur, V. Vadez, K.K. Sharma
      • Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects
      • Plant Cell Rep., Volume 27, 2008, pp. 411–424
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (220)
      • Blaylock et al., 1994
      • Blaylock, A.D., 1994. Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture, Laramie, Wyoming.
      • Chang et al., 2014
      • P. Chang, K.E. Gerhardt, Xiao-Dong Huang, Xiao-Ming Yu, B.R. Glick, P.D. Gerwing, B.M. Greenberg
      • Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils
      • Int. J. Phytorem., Volume 16, Issue 11, 2014, pp. 1133–1147
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (12)
      • Chen et al., 2007
      • M. Chen, H. Wei, J. Cao, R. Liu, Y. Wang, C. Zheng
      • Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabdopsis
      • J. Biochem. Mol. Biol., Volume 40, Issue 3, 2007, pp. 396–403
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (29)
      • Chinnusamy et al., 2006
      • V. Chinnusamy, J. Zhu, Jian-Kang Zhu
      • Gene regulation during cold acclimation in plants
      • Physiol. Plant., Volume 126, Issue 1, 2006, pp. 52–61
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (145)
      • Cho et al., 2006
      • K. Cho, H. Toler, J. Lee, B. Owenley, J.C. Stutz, J.L. Moore, R.M. Auge
      • Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses
      • J. Plant Physiol., Volume 163, 2006, pp. 517–528
      • Article
         | 
         PDF (359 K)
         | 
        View Record in Scopus
        Citing articles (54)
      • Dimkpa et al., 2009
      • C. Dimkpa, T. Weinand, F. Ash
      • Plant-rhizobacteria interactions alleviate abiotic stress conditions
      • Plant Cell Environ., Volume 32, 2009, pp. 1682–1694
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (128)
      • Dodd and Perez-Alfocea, 2012
      • I.C. Dodd, F. Perez-Alfocea
      • Microbial amelioration of crop salinity stress
      • J. Exp. Bot., Volume 63, Issue 9, 2012, pp. 3415–3428
      • View Record in Scopus
        Citing articles (54)
      • Egamberdieva and Kucharova, 2009
      • D. Egamberdieva, Z. Kucharova
      • Selection for root colonizing bacteria stimulating wheat growth in saline soils
      • Biol. Fertility Soil, Volume 45, 2009, pp. 563–571
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (57)
      • Egamberdiyeva, 2007
      • D. Egamberdiyeva
      • The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils
      • Appl. Soil Ecol., Volume 36, 2007, pp. 184–189
      • Article
         | 
         PDF (234 K)
         | 
        View Record in Scopus
        Citing articles (108)
      • Epstein et al., 1980
      • E.J.D. Epstein, D.W. Norlyn, R.W. Rush, D.B. Kinsbury, G.A. Kelly, Cunningham, A.F. Wrona
      • Saline culture of crops: a genetic approach
      • Science, Volume 210, 1980, pp. 399–404
      • View Record in Scopus
        Citing articles (329)
      • Foolad and Chen, 1999
      • M.R. Foolad, F.Q. Chen
      • RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato
      • Theor. Appl. Genet., Volume 99, 1999, pp. 235–243
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (36)
      • Foolad and Lin, 1997
      • M.R. Foolad, G.Y. Lin
      • Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato
      • Plant Breed., Volume 116, 1997, pp. 363–367
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (42)
      • Glick, 2007
      • B.R. Glick
      • Promotion of plant growth by bacterial ACC deaminase
      • Crit. Rev. Plant Sci., Volume 26, 2007, pp. 227–242
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (220)
      • Glick et al., 2007
      • B.R. Glick, Z. Cheng, J. Czarny, J. Duan
      • Promotion of plant growth by ACC deaminase-producing soil bacteria
      • Eur. J. Plant Pathol., Volume 119, 2007, pp. 329–339
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (196)
      • Godfray et al., 2010
      • H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin
      • Food security: the challenge of feeding 9 billion people
      • Science, Volume 327, 2010, pp. 812–818
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (1648)
      • Gray and Smith, 2005
      • E.J. Gray, D.L. Smith
      • Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes
      • Soil Biol. Biochem., Volume 37, 2005, pp. 395–412
      • Article
         | 
         PDF (319 K)
         | 
        View Record in Scopus
        Citing articles (214)
      • Grover et al., 2003
      • A. Grover, P.K. Aggarwal, A. Kapoor, S. Katiyar-Agarwal, M. Agarwal, A. Chandramouli
      • Addressing abiotic stresses in agriculture through transgenic technology
      • Curr. Sci., Volume 84, 2003, pp. 355–367
      • View Record in Scopus
        Citing articles (41)
      • Grover et al., 2011
      • M. Grover, Sk.Z. Ali, V. Sandhya, A. Rasul, B. Venkateswarlu
      • Role of microorganisms in adaptation of agriculture crops to abiotic stresses
      • World J. Microbiol. Biotechnol., Volume 27, 2011, pp. 1231–1240
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (57)
      • Hamdia et al., 2004
      • M.A. Hamdia, M.A.K. Shaddad, M.M. Doaa
      • Mechanism of salt tolerance and interactive effect of Azospirillum bransilense inoculation on maize cultivars grown under salt stress conditions
      • Plant Growth Regul., Volume 44, 2004, pp. 165–174
      • Full Text via CrossRef
      • Hardoim et al., 2008
      • P.R. Hardoim, S.V. van Overbeek, J.D. van Elsas
      • Properties of bacterial endophytes and their proposed role in plant growth
      • Trends Microbiol., Volume 16, 2008, pp. 463–471
      • Article
         | 
         PDF (779 K)
         | 
        View Record in Scopus
        Citing articles (289)
      • Hayat et al., 2010
      • R. Hayat, S. Ali, U. Amara, R. Khalid, I. Ahmed
      • Soil beneficial bacteria and their role in plant growth promotion: a review
      • Ann. Microbiol., Volume 60, 2010, pp. 579–598
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (232)
      • Haynes and Swift, 1990
      • R.J. Haynes, R.S. Swift
      • Stability of soil aggregates in relation to organic constituents and soil water content
      • J. Soil Sci., Volume 41, 1990, pp. 73–83
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (257)
      • Hu and Schmidhalter, 2002
      • Y. Hu, U. Schmidhalter
      • Limitation of salt stress to plant growth
      • Plant Toxicology, B. Hock, C.F. Elstner, 2002, Marcel Dekker Inc., New York, pp. 91–224
      • View Record in Scopus
      • Jamil et al., 2011
      • A. Jamil, S. Riaz, M. Ashraf, M.R. Foolad
      • Gene expression profiling of plants under salt stress
      • Crit. Rev. Plant Sci., Volume 30, Issue 5, 2011, pp. 435–458
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (22)
      • Javid et al., 2011
      • M.G. Javid, A. Sorooshzadeh, F. Moradi, A.M.M. Sanavy Seyed, I. Allahdadi
      • The role of phytohormones in alleviating salt stress in crop plants
      • AJCS, Volume 5, Issue 6, 2011, pp. 726–734
      • View Record in Scopus
        Citing articles (56)
      • Jha and Subramanian, 2014
      • Y. Jha, R.B. Subramanian
      • PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity
      • Physiol. Mol. Biol. Plants, Volume 20, Issue 2, 2014, pp. 201–207
      • Full Text via CrossRef
      • Jha et al., 2011
      • Y. Jha, R.B. Subramanian, S. Patel
      • Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress
      • Acta Physiol. Plant., Volume 33, 2011, pp. 797–802
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (23)
      • Joseph and Jini, 2010
      • B. Joseph, D. Jini
      • Salinity induced programmed cell death in plants: challenges and opportunities for salt tolerant plants
      • J. Plant Sci., 2010, pp. 1–15
      • Khatun and Flowers, 1995
      • S. Khatun, T.J. Flowers
      • Effects of salinity on seed set in rice
      • Plant Cell Environ., Volume 18, 1995, pp. 61–67
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (97)
      • Kohler et al., 2006
      • J. Kohler, F. Caravaca, L. Carrasco, A. Roldan
      • Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions
      • Soil Use Manage., Volume 22, 2006, pp. 298–304
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (46)
      • Kohler et al., 2009
      • J. Kohler, J.A. Hernandez, F. Caravaca, A. Roldan
      • Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress
      • Environ. Exp. Bot., Volume 65, 2009, pp. 245–252
      • Article
         | 
         PDF (201 K)
         | 
        View Record in Scopus
        Citing articles (79)
      • Lugtenberg et al., 2002
      • B. Lugtenberg, T. Chin-A-Woeng, G. Bloemberg
      • Microbe-plant interactions: principles and mechanisms
      • Antonie Van Leeuwenhoek, Volume 81, 2002, pp. 373–383
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (128)
      • Lutgtenberg and Kamilova, 2009
      • B. Lutgtenberg, F. Kamilova
      • Plant-growth-promoting rhizobacteria
      • Annu. Rev. Microbiol., Volume 63, 2009, pp. 541–556
      • Manchanda and Garg, 2008
      • G. Manchanda, N. Garg
      • Salinity and its effects on the functional biology of legumes
      • Acta Physiol. Plant., Volume 30, 2008, pp. 595–618
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (81)
      • Mayak et al., 2004
      • S. Mayak, T. Tirosh, B.R. Glick
      • Plant growth-promoting bacteria confer resistance in tomato plants to salt stress
      • Plant Physiol. Biochem., Volume 42, 2004, pp. 565–572
      • Article
         | 
         PDF (286 K)
         | 
        View Record in Scopus
        Citing articles (332)
      • Metternicht and Zinck, 2003
      • G.I. Metternicht, J.A. Zinck
      • Remote sensing of soil salinity: potentials and constraints
      • Remote Sens. Environ., Volume 85, 2003, pp. 1–20
      • Article
         | 
         PDF (1359 K)
         | 
        View Record in Scopus
        Citing articles (308)
      • Munns, 2002
      • R. Munns
      • Comparative physiology of salt and water stress
      • Plant Cell Environ., Volume 25, 2002, pp. 239–250
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (2306)
      • Munns, 2005
      • R. Munns
      • Genes and salt tolerance: bringing them together
      • New Phytol., Volume 167, 2005, pp. 645–663
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (847)
      • Munns and James, 2003
      • R. Munns, R.A. James
      • Screening methods for salinity tolerance: a case study with tetraploid wheat
      • Plant Soil, Volume 253, 2003, pp. 201–218
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (315)
      • Munns and Rawson, 1999
      • R. Munns, H.M. Rawson
      • Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley
      • Aust. J. Plant Physiol., Volume 26, 1999, pp. 459–464
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (49)
      • Munns et al., 2002
      • R. Munns, S. Husain, A.R. Rivelli, R.A. James, A.G. Condon, M.P. Lindsay, E.S. Lagudah, D.P. Schachtman, R.A. Hare
      • Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits
      • Plant Soil, Volume 247, Issue 1, 2002, pp. 93–105
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (204)
      • Nadeem et al., 2007
      • S.M. Nadeem, Z.A. Zahir, M. Naveed, M. Arshad
      • Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity
      • Can. J. Microbiol., Volume 53, 2007, pp. 1141–1149
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (76)
      • Nadeem et al., 2013
      • S.M. Nadeem, Z.A. Zaheer, M. Naveed, S. Nawaz
      • Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions
      • Ann. Microbiol., Volume 63, Issue 1, 2013, pp. 225–232
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (12)
      • Naz et al., 2009
      • I. Naz, A. Bano, Tamoor-ul-Hassan.
      • Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L
      • Afr. J. Biotechnol., Volume 8, Issue 21, 2009, pp. 5762–5766
      • View Record in Scopus
        Citing articles (1)
      • Netondo et al., 2004
      • G.W. Netondo, J.C. Onyango, E. Beck
      • Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress
      • Crop Sci., Volume 44, 2004, pp. 806–811
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (164)
      • Nia et al., 2012
      • S.H. Nia, M.J. Zarea, F. Rejali, A. Varma
      • Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil
      • J. Saudi Soc. Agric. Sci., Volume 11, 2012, pp. 113–121
      • Article
         | 
         PDF (909 K)
         | 
        View Record in Scopus
        Citing articles (2)
      • Palaniyandi et al., 2014
      • S.A. Palaniyandi, K. Damodharan, S.H. Yang, J.W. Suh
      • Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants
      • J. Appl. Microbiol., Volume 117, 2014, pp. 766–773
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (3)
      • Patel et al., 2011
      • B.B. Patel, Bharat.B. Patel, R.S. Dave
      • Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat
      • J. Appl. Technol. Environ. Sanitation, Volume 1, Issue 1, 2011, pp. 87–92
      • View Record in Scopus
        Citing articles (1)
      • Paul, 2012
      • D. Paul
      • Osmotic stress adaptations in rhizobacteria
      • J. Basic Microbiol., Volume 52, 2012, pp. 1–10
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (2)
      • Ramadoss et al., 2013
      • D. Ramadoss, V.K. Lakkineni, P. Bose, S. Ali, K. Annapurna
      • Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats
      • Springer Plus, Volume 2, Issue 6, 2013, pp. 1–7, doi:10.1186/2193-1801-2-6
      • View Record in Scopus
        Citing articles (21)
      • Richards, 1983
      • R.A. Richards
      • Should selection for yield in saline regions be made on saline or non-saline soils
      • Euphytica, Volume 32, 1983, pp. 431–438
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (110)
      • Sadeghi et al., 2012
      • A. Sadeghi, E. Karimi, P.A. Dahaji, M.G. Javid, Y. Dalvand, H. Askari
      • Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions
      • World J. Microbiol. Biotechnol., Volume 28, 2012, pp. 1503–1509
      • View article
      • Sandhya et al., 2009
      • V. Sandhya, Sk.Z. Ali, M. Grover, G. Reddy, B. Venkateswarlu
      • Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45
      • Biol. Fertility Soil, Volume 46, 2009, pp. 17–26
      • View article
      • Saravanakumar and Samiyappan, 2007
      • D. Saravanakumar, R. Samiyappan
      • ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants
      • J. Appl. Microbiol., Volume 102, 2007, pp. 1283–1292
      • View article
      • Schubert et al., 2009
      • S. Schubert, A. Neubert, A. Schierholt, A. Sumer, C. Zorb
      • Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods
      • Plant Sci., Volume 177, 2009, pp. 196–202
      • View article
      • Seckin et al., 2009
      • B. Seckin, A.H. Sekmen, I. Turkan
      • An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress
      • J. Plant Growth Regul., Volume 28, 2009, pp. 12–20
      • View article
      • Shahbaz and Ashraf, 2013
      • M. Shahbaz, M. Ashraf
      • Improving salinity tolerance in cereals
      • Crit. Rev. Plant Sci., Volume 32, 2013, pp. 237–249
      • View article
      • Shannon and Grieve, 1999
      • M.C. Shannon, C.M. Grieve
      • Tolerance of vegetable crops to salinity
      • Sci. Horticulturae, Volume 78, 1999, pp. 5–38
      • View article
      • Shukla et al., 2012
      • P.S. Shukla, P.K. Agarwal, B. Jha
      • Improved Salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria
      • J. Plant Growth Regul., Volume 31, 2012, pp. 195–206
      • View article
      • Singh and Chatrath, 2001
      • K.N. Singh, R. Chatrath
      • Salinity tolerance
      • Application of Physiology in Wheat Breeding, M.P. Reynolds, J.I.O. Monasterio, A. McNab, 2001, CIMMYT, Mexico, DF, pp. 101–110
      • View article
      • Stajner et al., 1997
      • D. Stajner, S. Kevresan, O. Gasic, N. Mimica-Dukic, H. Zongli
      • Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet
      • Biol. Plantarum, Volume 39, Issue 3, 1997, pp. 441–445
      • View article
      • Tabur and Demir, 2010
      • S. Tabur, K. Demir
      • Role of some growth regulators on cytogenetic activity of barley under salt stress
      • Plant Growth Regul., Volume 60, 2010, pp. 99–104
      • View article
      • Tank and Saraf, 2010
      • N. Tank, M. Saraf
      • Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants
      • J. Plant Interact., Volume 5, 2010, pp. 51–58
      • View article
      • Tester and Davenport, 2003
      • M. Tester, R. Davenport
      • Na+ tolerance and Na+ transport in higher plants
      • Ann. Bot., Volume 91, 2003, pp. 503–507
      • View article
      • Tiwari et al., 2011
      • S. Tiwari, P. Singh, R. Tiwari, K.K. Meena, M. Yandigeri, D.P. Singh, D.K. Arora
      • Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth
      • Biol. Fertility Soils, Volume 47, 2011, pp. 907–916
      • View article
      • Upadhyay et al., 2011
      • S.K. Upadhyay, J.S. Singh, A.K. Saxena, D.P. Singh
      • Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions
      • Plant Biol., Volume 14, 2011, pp. 605–611
      • View article
      • Venkateswarlu and Shanker, 2009
      • B. Venkateswarlu, A.K. Shanker
      • Climate change and agriculture: adaptation and mitigation strategies
      • Indian J. Agron., Volume 54, 2009, pp. 226–230
      • View article
      • Wang et al., 2003
      • W. Wang, B. Vinocur, A. Altman
      • Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance
      • Planta, Volume 218, 2003, pp. 1–14
      • View article
      • Wu et al., 2012
      • Z. Wu, H. Yue, J. Lu, C. Li
      • Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress
      • World J. Microbiol. Biotechnol., Volume 28, 2012, pp. 2383–2393
      • View article
      • Yamaguchi and Blumwald, 2005
      • T. Yamaguchi, E. Blumwald
      • Developing salt-tolerant crop plants: challenges and opportunities
      • Trends Plant Sci., Volume 10, Issue 12, 2005, pp. 615–620
      • View article
      • Yang et al., 2009
      • J. Yang, J.W. Kloepper, C.M. Ryu
      • Rhizosphere bacteria help plants tolerate abiotic stress
      • Trends Plant Sci., Volume 14, 2009, pp. 1–4
      • View article
      • Yao et al., 2010
      • L. Yao, Z. Wu, Y. Zheng, I. Kaleem, C. Li
      • Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton
      • Eur. J. Soil Biol., Volume 46, 2010, pp. 49–54
      • View article
      • Yensen, 2008
      • N.P. Yensen
      • Halophyte uses for the twenty-first century
      • Ecophysiology of High Salinity Tolerant Plants, M.A. Khan, D.J. Weber, 2008, Springer, Dordrecht, pp. 367–396
      • View article
      • Yildirim and Taylor, 2005
      • E. Yildirim, A.G. Taylor
      • Effect of biological treatments on growth of bean plans under salt stress
      • Ann. Rep. Bean Improvement Cooperative, Volume 48, 2005, pp. 176–177
      • View article
      • Zahir et al., 2008
      • Z.A. Zahir, A. Munir, H.N. Asghar, M. Arshad, B. Shaharoona
      • Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions
      • J. Microbiol. Biotechnol., Volume 18, Issue 5, 2008, pp. 958–963
      • View article
      • Zhang et al., 2008
      • H. Zhang, M.S. Kim, Y. Sun, S.E. Dowd, H. Shi, P.W. Pare
      • Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1
      • Mol. Plant Microbe Interact., Volume 21, 2008, pp. 731–744
      • View article
      • Zhu, 2002
      • J.K. Zhu
      • Salt and drought stress signal transduction in plants
      • Annu. Rev. Plant Bol., Volume 53, 2002, pp. 247–273
      • View article

    • Peer review under responsibility of King Saud University.
    • ⁎ 
      Corresponding author.
    Copyright © 2014 The Authors. Production and hosting by Elsevier B.V.
    Open access funded by King Saud University


    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S1319562X14001715
    at July 07, 2016
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ▼  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ▼  Jul 07 (19)
          • 5 Symptoms of Stress Overload
          • Five Symptoms of Chronic Stress
          • Ab Exercises Without Equipment for Women
          • How to Get Nice Abs for Women
          • The Normal Heart Rate During a Panic Attack
          • Heart Rate on Stairs
          • Heart Rate & Body Positions
          • Cholesterol in Corn
          • Fruits That Lower Cholesterol
          • Carrots & Cholesterol
          • Dates and Cholesterol
          • How to Gain Weight With Dates & Tahini As a Vegan
          • Side Effects of Turmeric Capsules
          • Is Turmeric Safe for Children?
          • How Should I Take Curcumin & Turmeric Supplements?
          • Characterization of the imprinting and expression ...
          • Soil salinity: A serious environmental issue and p...
          • The Calcineurin B-Like Ca2+ Sensors CBL1 and CBL9 ...
          • How Do Sugars Regulate Plant Growth and Developmen...
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ►  June (1003)
        • ►  Jun 30 (29)
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.