• We proved efficacy of hydrogen cyanide (HCN) for controlling B. xylophilusH. bajulus & A. glabripennis.
  • We assessed the rate of penetration of HCN into spruce blocks.
  • HCN is a promising fumigation alternative to methyl bromide.

Abstract

Pinewood nematodes (Bursaphelenchus xylophilus) and Asian longhorned beetles (Anoplophora glabripennis) are the primary regulated pests for packaging wood and timber in the EU, while the house longhorned beetle (Hylotrupes bajulus) is the most important cosmopolitan pest of construction wood. Gaseous hydrogen cyanide (HCN) is one of the few fumigation alternatives to the banned ozone-depleting chemical methyl bromide (MBr). This study reports the results of HCN fumigation experiments in a hermetically sealed steel chamber regarding (1) the penetration and absorption rates of HCN in wooden blocks, and (2) the biological efficacy of HCN against the wood-infesting pests B. xylophilus (in sawdust), A. glabripennis, and H. bajulus (in wooden blocks). A concentration equilibrium for HCN (at 20 g m−3) between the fumigation chamber headspace and the center of the treated spruce blocks (100 × 100 × 120 mm) was reached after 48 h in the saturated atmosphere. A dose of 10 g m−3 in the center of the spruce blocks was reached for both saturated and non-saturated atmospheres after 24 h of fumigation. The wood tested absorbed approximately 40–45% of the HCN, until equilibrium was reached. The highest tested HCN dose (20 g m−3) led to 100% mortality of the A. glabripennis and H. bajuluslarvae after less than 1 h of exposure. For 20 g m−3 and 1 h exposure the Ct product was <18.66 g*h/m3 for H. bajulus and <17.67 g*h/m3 for A. glabripennis. Hydrogen cyanide doses of 10 g m−3 and 20 g m−3 led to 100% B. xylophilus mortality in 40 and 18 h, respectively. For B. xylophilus the Ct product was <424.00 g*h/m3 for 20 °C and 10 g m−3 and <349.51 g*h/m3 for 25 °C and 20 g m−3. The initial results are promising in terms of establishing an alternative technology and protocol to MBr for timber fumigation.