Published Date
Energy
Cite this article as:
Kim, YM., Han, T.U., Hwang, B. et al. Korean J. Chem. Eng. (2016) 33: 2350. doi:10.1007/s11814-016-0142-2
Author
Abstract
The pyrolysis of softwoods (Pinus (P.) densiflora, P. koraiensis), hardwoods (Quercus acutissima and Liriodendron tulipifera) and nut shell of P. koraiensis was investigated using a thermogravimetric analyzer and fixed bed reactor. Thermogravimetric analysis showed that the maximum decomposition temperature of each biomass was influenced by the ash content and lignocellulosic composition of biomass. The activation energy values also varied according to the content of hemicellulose and lignin of each biomass. Large amounts of acids, such as acetic acid, were recovered from the hardwood pyrolysis reaction due to their high hemicellulose content. The nut shell of P. koraiensis and softwoods with a higher lignin content produced higher yields of phenolic compounds than the hardwoods.
References
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S1018363915000252
Energy
- First Online:
- 27 June 2016
DOI: 10.1007/s11814-016-0142-2
Abstract
The pyrolysis of softwoods (Pinus (P.) densiflora, P. koraiensis), hardwoods (Quercus acutissima and Liriodendron tulipifera) and nut shell of P. koraiensis was investigated using a thermogravimetric analyzer and fixed bed reactor. Thermogravimetric analysis showed that the maximum decomposition temperature of each biomass was influenced by the ash content and lignocellulosic composition of biomass. The activation energy values also varied according to the content of hemicellulose and lignin of each biomass. Large amounts of acids, such as acetic acid, were recovered from the hardwood pyrolysis reaction due to their high hemicellulose content. The nut shell of P. koraiensis and softwoods with a higher lignin content produced higher yields of phenolic compounds than the hardwoods.
References
- L. Singh and Z.A. Wahid, J. Ind. Eng. Chem., 21, 70 (2015).CrossRefGoogle Scholar
- 2.S. Chayaporn, P. Sungsuk, S. Sunphorka, P. Kuchonthara, P. Piumsomboon and B. Chalermsinsuwan, Korean J. Chem. Eng., 32, 1081 (2015).CrossRefGoogle Scholar
- 3.M. Song, H.D. Pham, J. Seon and H.C. Woo, Korean J. Chem. Eng., 32, 567 (2015).CrossRefGoogle Scholar
- 4.H. J. Park, H. S. Heo, J.-H. Yim, J.-K. Jeon, Y. S. Ko, S.-S. Kim and Y.-K. Park, Korean J. Chem. Eng., 27, 73 (2010).CrossRefGoogle Scholar
- 5.S.-H. Lee, M.-S. Eom, K.-S. Yoo, N.-C. Kim, J.-K. Jeon, Y.-K. Park, B.-H. Song and S.-H. Lee, J. Anal. Appl. Pyrol., 83, 110 (2008).CrossRefGoogle Scholar
- 6.H. S. Choi, Y. S. Choi and H. C. Park, Korean J. Chem. Eng., 27, 1164 (2010).CrossRefGoogle Scholar
- 7.T.U. Han, Y.-M. Kim, C. Watanabe, N. Teramae, Y.-K. Park, S. Kim and Y. Lee, J. Ind. Eng. Chem., 32, 345 (2015).CrossRefGoogle Scholar
- 8.Y. J. Bae, C. Ryu, J.-K. Jeon, J. Park, D. J. Suh, Y.-W. Suh, D. Chang and Y.-K. Park, Bioresour. Technol., 102, 3512 (2011).CrossRefGoogle Scholar
- 9.S.-S. Kim, H.V. Ly, G.-H. Choi, J. Kim and H. C. Woo, Bioresour. Technol., 123, 445 (2012).CrossRefGoogle Scholar
- 10.Y.-M. Kim, H.W. Lee, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon, S. Kim and Y.-K. Park, Korean J. Chem. Eng., 28, 2012 (2011).CrossRefGoogle Scholar
- 11.Y.-M. Kim, H.W. Lee, S. Kim, C. Watanabe and Y.-K. Park, Bioenerg. Res., 8, 431 (2015).CrossRefGoogle Scholar
- 12.Y.-M. Kim, J. Jae, H.W. Lee, T.U. Han, H. Lee, S. H. Park, S. Kim, C. Watanabe and Y.-K. Park, Energy Convers. Manage. (2016), DOI:10.1016/j.enconman.2016.02.065.Google Scholar
- 13.H. S. Heo, H. J. Park, J.-I. Dong, S. H. Park, S. Kim, D. J. Suh, Y.-W. Suh, S.-S. Kim and Y.-K. Park, J. Ind. Eng. Chem., 16, 27 (2010).CrossRefGoogle Scholar
- 14.J.W. Kim, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon and Y.-K. Park, Korean J. Chem. Eng., 28, 1867 (2011).CrossRefGoogle Scholar
- 15.B.-S. Kim, Y.-M. Kim, H.W. Lee, J. Jae, D. H. Kim, S.-C. Jung, C. Watanabe and Y.-K. Park, ACS Sustainable Chem. Eng., 4, 1354 (2016).CrossRefGoogle Scholar
- 16.E.H. Lee, R.-S. Park, H. Kim, S. H. Park, S.-C. Jung, J.-K. Jeon, S. C. Kim and Y.-K. Park, J. Ind. Eng. Chem., 37, 18 (2016).CrossRefGoogle Scholar
- 17.M.G. Gronli, G. Varhegyi and C.D. Blasi, Ind. Eng. Chem. Res., 41, 4201 (2002).CrossRefGoogle Scholar
- 18.S. Wang, B. Ru, H. Lin and W. Sun, Fuel, 150, 243 (2015).CrossRefGoogle Scholar
- 19.S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen and T. Fransson, Biotechnol. Adv., 27, 562 (2009).CrossRefGoogle Scholar
- 20.B.G. Diehl, N.R. Brown, C.W. Frantz, M.R. Lumadue and F. Cannon, Carbon, 60, 531 (2013).CrossRefGoogle Scholar
- 21.J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen and R. Xiao, Polym. Degrad. Stab., 108, 133 (2014).CrossRefGoogle Scholar
- 22.Y.-M. Kim, S. Kim, T.U. Han, Y.-K. Park and C. Watanabe, J. Anal. Appl. Pyrol., 110, 435 (2014).CrossRefGoogle Scholar
- 23.S.H. Park, H. J. Cho, C. Ryu and Y.-K. Park, J. Ind. Eng. Chem., 36, 314 (2016).CrossRefGoogle Scholar
- 24.J. H. Ko, R.-S. Park, J.-K. Jeon, D. H. Kim, S.-C. Jung, S. C. Kim and Y.-K. Park, J. Ind. Eng. Chem., 32, 109 (2015).CrossRefGoogle Scholar
- 25.ASTM E698-11 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method.
- 26.J. S. Kim, Korean Chem. Eng. Res., 51, 303 (2013).CrossRefGoogle Scholar
- 27.J.-H. Jang, S.-H. Lee and N.-H. Kim, J. Korean Wood Sci. Technol., 42, 700 (2014).CrossRefGoogle Scholar
- 28.W. Jin, K. Singh and J. Zondlo, Agriculture, 3, 12 (2013).CrossRefGoogle Scholar
- 29.M. I. Jahirul, M.G. Rasul, A.A. Chowdhury and N. Ashwath, Energies, 5, 4952 (2012).CrossRefGoogle Scholar
- 30.H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 86, 1781 (2007).CrossRefGoogle Scholar
- 31.Y. Wu, Z. Zhao, H. Li and F. He, J. Fuel Chem. Technol., 37, 427 (2009).CrossRefGoogle Scholar
- 32.H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee and D.T. Liang, Energy Fuels, 20, 388 (2006).CrossRefGoogle Scholar
- 33.I.-Y. Eom, K.-H. Kim, J.-Y. Kim, S.-M. Lee, H.-M. Yeo, I.-G. Choi and J.-W. Choi, Bioresour. Technol., 102, 3437 (2011).CrossRefGoogle Scholar
- 34.I.-Y. Eom, J.-Y. Kim, T.-S. Kim, S.-M. Lee, D. Choi, I.-G. Choi and J.-W. Choi, Bioresour. Technol., 104, 687 (2012).CrossRefGoogle Scholar
- 35.Q. Liu, S. Wang, K. Wang, Z. Luo and K. Cen, Korean J. Chem. Eng., 26, 548 (2009).CrossRefGoogle Scholar
- 36.G. Varhegyi, M. J. Antal, E. Jakab and P. Szabo, J. Anal. Appl. Pyrol., 42, 73 (1997).CrossRefGoogle Scholar
- 37.T. Hosoya, H. Kawamoto and S. Saka, J. Anal. Appl. Pyrol., 85, 237 (2009).CrossRefGoogle Scholar
- 38.D. J. Nowakowski, J.M. Jones, R.M.D. Brydson and A.B. Ross, Fuel, 86, 2389 (2007).CrossRefGoogle Scholar
- 39.S. Wang, B. Ru, H. Lin and Z. Luo, Bioresour. Technol., 143, 378 (2013).CrossRefGoogle Scholar
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S1018363915000252
No comments:
Post a Comment