Blog List

Friday, 4 November 2016

Synthesis and characterization of kraft lignin-graft-polylactide copolymers

Published Date
Volume 50, Issue 6pp 1293–1304

Original
DOI: 10.1007/s00226-016-0847-8

Cite this article as: 
Kim, S.J., Kim, Y.S., Lee, OK. et al. Wood Sci Technol (2016) 50: 1293. doi:10.1007/s00226-016-0847-8

Author
  • Seok Ju Kim
  • Yong Sik Kim
  • Oh-Kyu Lee
  • Byoung-Jun Ahn
Abstract

The graft polymerization of polylactic acid (PLA) onto methanol-soluble kraft lignin (MeKL) was performed successfully through acylation substitution using chlorine-terminated PLA with a number average of molecular weight (Mn) of 5400–24,000 g/mol. As the Mn value of the PLA used for the graft polymerization process was increased, the obtained MeKL-g-PLA copolymers decreased from 9,000,000 to 1,100,000 g/mol. The structural characteristics of the MeKL-g-PLA copolymers were analyzed using Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies. It was found that the thermal properties of the MeKL-g-PLA copolymers improved slightly, with their glass-transition temperature increasing to a level higher than that of pure PLA. The tensile strengths and elasticity modulus of the MeKL-g-PLA copolymers were independent of the Mn value and were 3.5–3.8 MPa and 0.038–0.045 GPa, respectively.

References

  1. Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350CrossRefGoogle Scholar
  2. Alexy A, Košíková B, Pldstránska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41:4901–4908CrossRefGoogle Scholar
  3. ASTM D 3500 (2009) Standard test methods for structural panels in tension. ASTM International, West Conshohocken
  4. Bhattacharya A, Misra BN (2004) Grafting:a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29(8):767–814CrossRefGoogle Scholar
  5. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composities with man-made cellulose and abaca fibres. Compos Part A Appl Sci Manuf 40:404–412CrossRefGoogle Scholar
  6. Bonini C, D’Auria M, Ferri R, Pucciariello R, Sabia AR (2003) Graft copolymers of lignin with electron poor alkenes. J Appl Polym Sci 90(4):1163–1171CrossRefGoogle Scholar
  7. Brosse N, Mohamad Ibrahim MN, Abdul Rahim A (2011) Biomass to bioethanol: initiatives of the future for lignin. ISRN Mater Sci 2011:1–10CrossRefGoogle Scholar
  8. Chung YL, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL, Sattely ES (2013) A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238CrossRefGoogle Scholar
  9. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  10. El-Zawawy WK (2005) Preparation of hydrogel from green polymer. Polym Adv Technol 16:48–54CrossRefGoogle Scholar
  11. Feldman D, Banu D, Manley RSJ, Zhu H (2002) Highly filled blends of a vinylic copolymer with plasticized lignin: thermal and mechanical properties. J Appl Polym Sci 89:2000–2010CrossRefGoogle Scholar
  12. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  13. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  14. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338CrossRefGoogle Scholar
  15. Henton DE, Gruber P, Lunt J, Randall J (2005) Chapter 16: Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT(eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton. doi:10.1201/9780203508206.ch16
  16. Jacobsen S, Fritz HG (1999) Plasticizing polylactide–the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRefGoogle Scholar
  17. Kadla JF, Kubo S, Venditti R, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon (NY) 40:2913–2920CrossRefGoogle Scholar
  18. Kim SJ, Kim YS (2013) The analysis of products from base-catalyzed depolymerization of kraft lignin. J Korean Wood Sci Technol 41(6):585–593Google Scholar
  19. Kim YS, Youe WJ, Kim SJ, Lee OK, Lee SS (2015) Preparation of a thermoplastic lignin-based biomaterial through atom transfer radical polymerization. J Wood Chem Technol 35:251–259CrossRefGoogle Scholar
  20. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745CrossRefGoogle Scholar
  21. Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911CrossRefGoogle Scholar
  22. Li H, McDonald AG (2014) Fractionation and characterization of industrial lignins. Ind Crops Prod 62:67–76CrossRefGoogle Scholar
  23. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly(l-lactic acid) and lignin. Polym Int 52:949–955CrossRefGoogle Scholar
  24. Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154CrossRefGoogle Scholar
  25. Meister JJ, Patil DR, Channell H (1984) Properties and applications of lignin–acrylamide graft copolymer. J Appl Polym Sci 29:3457–3477CrossRefGoogle Scholar
  26. Moon S, Lee C-W, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weight. Polymer (Guildf) 42:5059–5062CrossRefGoogle Scholar
  27. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32:656–661CrossRefGoogle Scholar
  28. Murariu M, Ferreira ADS, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19:636–646CrossRefGoogle Scholar
  29. Ouyang W, Huang Y, Luo H, Wang D (2012) Poly(lactic acid) blended with celluloytic enzyme lignin: mechanical and thermal properties and morphology evaluation. J Polym Environ 20:1–9CrossRefGoogle Scholar
  30. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41CrossRefGoogle Scholar
  31. Pucciariello R, Bonini C, D’Auria M, Villani V, Giammarino G, Gorrasi G (2008) Polymer blends of steam-explosion lignin and poly(ε-caprolactone) by high-energy ball milling. J Appl Polym Sci 109:309–313CrossRefGoogle Scholar
  32. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  33. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem A Eur J 17:5939–5948CrossRefGoogle Scholar
  34. Su L, Xing Z, Wang D, Xu G, Ren S, Fang G (2013) Mechanical properties research and structural characterization of alkali lignin/poly(vinyl alcohol) reaction films. BioResources 8:3532–3543CrossRefGoogle Scholar
  35. Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol Rapid Commun 22:820–824CrossRefGoogle Scholar
  36. Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomed 5:1057–1065Google Scholar
  37. Youe WJ, Lee SM, Lee SS, Lee SH, Kim YS (2016) Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Int J Biol Macromol 82:497–504CrossRefPubMedGoogle Scholar
  38. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefPubMedGoogle Scholar

For further details log on website :
http://dx.doi.org/10.1007/s00226-016-0847-8

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...