Blog List

Monday, 19 December 2016

The role of extinction on the re-ignition potential of wood-based embers in bushfires

Author

Behdad Moghtaderi A B , Tri Poespowati A , Eric M. Kennedy A and Bogdan Z. Dlugogorski A
A Industrial Safety and Environment Protection Group, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia. 
B Corresponding author. Email: behdad.moghtaderi@newcastle.edu.au
International Journal of Wildland Fire 16(5) 547-555 http://dx.doi.org/10.1071/WF06029
Submitted: 6 March 2006  Accepted: 24 March 2007   Published: 26 October 2007 

Abstract

The re-ignition potential of partially burnt wood-based embers was investigated theoretically by studying their extinction characteristics. An adaptation of Semenov’s thermal explosion theory was used in conjunction with a linear stability analysis to determine the critical particle size at which extinction occurs. Particles of various shapes were studied and the analysis was carried out for both thermally thin and thermally thick particles. The results of our analysis indicate that thermally thick embers are less susceptible to extinction than thermally thin ones and, as such, are more prone to re-ignition. The results also show that the extinction of wood embers is strongly affected by the particle temperature, particle shape, and reaction kinetics. The effects of ambient conditions were found to be less pronounced than particle properties.
Additional keywords: flame spread, mathematical modelling.

References

Albini FA (1979) Spot fire distance from burning trees – a predictive model. USDA Forest Services, General Technical Report INT-56. (Washington, DC)

Albini FA1983Transport of firebrands by line thermals.Combustion Science and Technology32277288doi:10.1080/00102208308923662

Australian Bureau of Statistics (2005) http://www.ABS.gov.au [Verified 5 February 2005].

Aziz A, Na TY (1984) ‘Perturbation Methods in Heat Transfer.’ (Hemisphere Publishing Corporation: New York)

Babrauskas V (2003) ‘Ignition Handbook. Fire Sciences Publishers.’ USA. (Fire Science Publishers: Issaquah, WA, USA)

Beer T1990The Australian National Bushfire model project.Mathematical and Computer Modelling13(12)4956doi:10.1016/0895-7177(90)90098-8

Bell A1985How bushfires set houses alight – lessons from Ash Wednesday.ECOS4337 

Chen YDelichatsios MAMotevalli V1993Material pyrolysis properties, Part 1: an integral model for one-dimensional transient pyrolysis of charring and non-charring materials.Combustion Science and Technology88309328doi:10.1080/00102209308947242

Cheney NP1990Quantifying bushfires.Mathematical and Computer Modelling13(12)915doi:10.1016/0895-7177(90)90094-4

Clements HB (1977) Lift-off of forest firebrands. USDA Forest Services, Southeast Forest Experiment Station, Research Paper SE-159. (Asheville, NC)

Cottrell A2005Communities and bushfire hazard in Australia: more questions than answers.Environmental Hazards6109114 

Dowling VP1994Ignition of timber bridges in bushfires.Fire Safety Journal22145168doi:10.1016/0379-7112(94)90070-1

Ellis PF (2000) The aerodynamic and combustion characteristics of eucalypt bark – a firebrand study. PhD Thesis, Australian National University, Canberra.

Finney MA (1998) FARSITE: Fire Area Simulator – model development and evaluation. USDA Forest Service, Rocky Mountain Research Station Paper RMRS-RP-4. (Ogden, UT)

Gill AM2004Landscape fires as social disasters: an overview of the bushfire problem.Environmental Hazards66580 

Gillen M2005Urban governance and vulnerability: exploring the tensions and contradictions in Sydney’s response to bushfire threat.Cities225564doi:10.1016/J.CITIES.2004.10.006

Goodman TR (1964) Application of integral methods to transient non-linear heat transfer. In ‘Advances in Heat Transfer. VI’. (Eds TF Irvine, JP Hartnelt) pp. 51–122. (Academic Press: New York)

Green DGTridgell AGill AM1990Interactive simulation of bushfires in heterogeneous fuels.Mathematical and Computer Modelling13(12)5766doi:10.1016/0895-7177(90)90099-9

Griffith JF, Barnard JA (1995) ‘Flame and Combustion.’ 3rd edn. (Blackie Academic & Professional: Glasgow, Scotland)

Hamada M (1951) Experiments on the ignition due to firebrands. Property and Casualty Insurance Rating Organisation of Japan, Fire Research Report. (Tokyo, Japan)

Handmer JTibbits A2005Is staying at home the safest option during bushfires? Historical evidence for an Australian approach.Environmental Hazards68191 

Lee SLHellman JM1970Firebrand trajectory study using an empirical velocity-dependent burning law.Combustion and Flame15265274doi:10.1016/0010-2180(70)90006-4

McArthur NALutton P1991Ignition of exterior building details in bushfires: an experimental study.Fire and Materials155964doi:10.1002/FAM.810150204

Meesri CMoghtaderi B2003Experimental and numerical analysis of sawdust char combustion reactivity in a drop tube reactor.Combustion Science and Technology175793823doi:10.1080/00102200302392

Moghtaderi B2004Extinction of multi-species char clouds in pulverised fuel combustors.Fuel8319611972doi:10.1016/J.FUEL.2004.04.009

Moghtaderi B, Novozhilov V, Fletcher DF, Kent JH (1995) An integral model for the pyrolysis of non-charring materials. In ‘Fire Science and Technology – Proceedings of the Second Asia–Oceania Symposium’. 13–17 September 1995, Khabarovsk, Russia. (Eds VK Bulgakov, AI Karpov) pp. 308–319. (Khabarovsk State University of Technology: Khabarovsk, Russia)

Moghtaderi BNovozhilov VFletcher DFKent JH1997An integral model for the transient pyrolysis of solid materials.Fire and Materials21716doi:10.1002/(SICI)1099-1018(199701)21:1<7::AID-FAM588>3.0.CO;2-T

Muraszew AFedele JBKuby W1977Trajectory of firebrands in and out of fire whirls.Combustion and Flame30321324doi:10.1016/0010-2180(77)90081-5

Ozisik MN (1992) ‘Heat Conduction.’ 2nd edn. (Wiley: New York)

Peters B2002Extinction of burning particles due to unstable combustion modes.Fuel81391396doi:10.1016/S0016-2361(01)00183-1

Quintiere JGIqbal N1994Approximate integral model for the burning rate of a thermoplastic-like material.Fire and Materials188998doi:10.1002/FAM.810180205

Ramsey GC, McArthur NA (1995) Building in the urban interface: lessons from the January 1994 Sydney bushfires. In ‘Bushfire’ 95 Conference’. 27–30 September 1995, Hobart, TAS. (Forestry Tasmania, Parks and Wildlife Service and Tasmania Fire Service: Hobart)

Ranz WMarshall W1952Evaporation from drops.Chemical Engineering Progress48141146 

Semenov NN (1935) ‘Chemical Kinetics and Chain Reactions.’ (Oxford University Press: London) 

Spearpoint MJQuintiere JG2000Predicting the burning of wood using an integral model.Combustion and Flame123308325
doi:10.1016/S0010-2180(00)00162-0

Spearpoint MJQuintiere JG2001Predicting the piloted ignition of wood in the cone calorimeter using an integral model – effect of species, grain orientation and heat flux.Fire Safety Journal36391415doi:10.1016/S0379-7112(00)00055-2

Tarifa CSDel Notario PPMoreno FG1965On the flight path and lifetimes of burning particle of wood.Proceedings of the Combustion Institute1010211037 

Tse SDFernandez-Pello AC1998On the flight paths of metal particles and embers generated by power lines in high winds – a potential source of wildland fires.Fire Safety Journal30333356doi:10.1016/S0379-7112(97)00050-7

van der Wel PGJ (1993) Ignition and propagation of dust explosions. PhD Thesis, Delft University, the Netherlands.

Wang HDlugogorski BZKennedy EM1999Theoretical analysis of reaction regimes in low-temperature oxidation of coal.Fuel7810731081doi:10.1016/S0016-2361(99)00016-2 

For further details log on website :
http://www.publish.csiro.au/WF/WF06029

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...