Author
DOI: http://dx.doi.org/10.20886/ijfr.2014.1.1.47-65
For further details log on website :
http://ejournal.forda-mof.org/ejournal-litbang/index.php/IJFR/article/view/26
Abstract
In forest biomass assessment studies, the selection or development of reliable allometric biomass equations is an essential step which determines largely the accuracy of the resulted biomass estimates. Unfortunately, only few studies on allometric biomass equations have been conducted for peat swamp forests and the results are usually not publicly accessible or well documented. Thus, the objective of this study was to develop site-specific allometric equations for above-ground biomass (AGB) estimations in tropical peat swamp forests in Indonesia. These equations were developed based on 51 destructively sampled trees. The results indicated that the developed site-specific allometric equations have coefficient of determination (R2) greater than 95%. The R2 values ranged from 97.0% to 98.7%, where the lowest R2 value resulted from the simplest model which used only DBH as a predictor. Model 5, which used DBH, H and ρ as predictive variables, provided best performance when estimating the AGB of the study area. Hence, as long as reliable data are available as input, Model 5 is recommended. The accuracy and applicability of the allometric equations for peat swamp forests could be improved further by adding more sampled trees from different tree species and/or with a wider DBH range. Considering the importance of wood density in the estimation of the AGB and the lack of this information for peat swamp forest tree species, research should be dedicated to analysing the wood density of the dominant tree species comprising the majority of the AGB density in the study area.
Keywords
Site-specific; allometric equation; above-ground biomass; peat swamp forest; Riau
Full Text:
PDFReferences
Aboal, J. R., Arevalo, J. R., & Fernandez, A. (2005). Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora, 200, 264-274.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237-1246.
Araujo, T. M., Higuchi, N., & Junior, J. A. d. C. (1999). Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para, Brazil. Forest Ecology and Management, 117(1-3), 43-52.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Fiore, A. D., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562.
Banskota, A., Wynne, R., Johnson, P., & Emessiene, B. (2011). Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests. Annals of Forest Science, 1-10. doi:10.1007/s13595-011-0023-0
Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684-1694.
Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Cid Ferreira, C. A., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil. Forest Ecology and Management, 75(1-3), 175-189.
Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881-902.
CGIAR. (2008). Wood density database. Retrieved 15 January 2011, from http://www.worldagroforestry.org/sea/Products/AFDbases/WD/Index.htm
Chambers, J. Q., Santos, J. d., Ribeiro, R. J., & Higuchi, N. (2001). Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152(1-3), 73-84.
Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London, 03TB055D (on-line), 1-12.
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91(2), 240-252. doi: 10.1046/j.1365-2745.2003.00757.x
Chave, J., Riera, B., & Dubois, M.-A. (2001). Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17(1), 79-96.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11(2), 356-370.
Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229(1-3), 351-360.
Crow, T. R. (1978). Common regressions to estimate tree biomass in tropical stands. Forest Science, 24, 110-114.
Cunia, T. (1987). Error of forest inventory estimates: its main components. In E. H. Wharton & T. Cunia (Eds.), Estimating tree biomass regressions and their error, Northeastern Forest Experimental Station, Brooomall, Pennsylvania: USDA.
FAO. (2004). National Forest Inventory: Field manual template. Rome: FAO.
FAO. (2006). Global Forest Resources Assessment 2005: progress towards sustainable forest management FAO Forestry Paper: 147 (pp. pp. 350). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
Fehrmann, L., & Kleinn, C. (2006). General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. Forest Ecology and Management, 236(2-3), 412-421.
Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10(4), 379-387.
Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(045023), 1-13.
Goetz, S., Achard, F., Joosten, H., Kanamaru, H., Lehtonen, A., Menton, M., & Wattenbach, M. (2010). Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools Systematic Review No. 09-016 (previously SR77): Collaboration for Environmental Evidence.
Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29-51.
Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., & Osaki, M. (2007). Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13(2), 412-425. doi:10.1111/j.1365-2486.2006.01301.x
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2009). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences Discussions, 6(4), 7207-7230.
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514.
Hooijer, A., Silvius, M., Wosten, H., & Page, S. (2006). PEAT-CO2: assessment of CO2 emissions from drained peatlands in SE Asia (pp. 41p.). Delft, the Netherlands: Delft Hydraulics Report QA 3943.
Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945-958. doi: 10.1111/j.1365-2486.2005.00955.x
Houghton, R. A., Lawrence, K. T., Hackler, J. L., & Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 7(7), 731-746. doi:10.1046/j.1365-2486.2001.00426.x
Istomo. (2002). Kandungan fosfor dan kalsium serta penyebarannya pada tanah dan tumbuhan hutan rawa gambut: studi kasus di Wilayah Bagian Kesatuan Pemangkuan Hutan Bagan, Kabupaten Rokan Hilir, Riau (PhD), Institut Pertanian Bogor, Bogor.
Istomo, Komar, T. E., Tata, M. H. L., Sumbayak, E. S. S., & Rahma, A. (2010). Evaluasi Sistem Silvikultur Hutan Rawa Gambut di Indonesia (in Indonesian). Bogor, Indonesia: ITTO-CITES Project and Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam, Kementerian Kehutanan
Jaenicke, J., Rieley, J. O., Mott, C., Kimman, P., & Siegert, F. (2008). Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 147(3-4), 151-158.
Jayaraman, K. (1999). A statistical manual for forestry research Forestry Research Support Programme for Asia and the Pacific (pp. 234). Bangkok, Thailand: Food and Agriculture Organization of the United Nations (FAO) Regional Office for Asia and the Pacific.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49, 12-35.
Jepsen, M. R. (2006). Above-ground carbon stocks in tropical fallows, Sarawak, Malaysia. Forest Ecology and Management, 225(1-3), 287-295.
Kenzo, T., Furutani, R., Hattori, D., Kendawang, J., Tanaka, S., Sakurai, K., & Ninomiya, I. (2009). Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. Journal of Forest Research, 14(6), 365-372.
Kenzo, T., Ichie, T., Hattori, D., Itioka, T., Handa, C., Ohkubo, T., & Ninomiya, I. (2009). Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. Journal of Tropical Ecology, 25(04), 371-386. doi:10.1017/S0266467409006129
Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau', Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209.
Krisnawati, H., Adinugroho, W. C., & Imanuddin, R. (2012). Monograph Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia. Bogor, Indonesia: Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency, Ministry of Forestry.
Krisnawati, H., & Imanuddin, R. (2011). Carbon stock estimation of aboveground pool based on forest inventory (permanent sample plot) data: a case study in peat swamp forest in Jambi Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Labrecque, S., Fournier, R. A., Luther, J. E., & Piercey, D. (2006). A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226(1-3), 129-144.
Losi, C. J., Siccama, T. G., Condit, R., & Morales, J. E. (2003). Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management, 184(1-3), 355-368.
Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297-1328.
Lucas, R. M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., & Tickle, P. (2006). Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sensing of Environment, 100(3), 407-425.
Ludang, Y., & Jaya, H. P. (2007). Biomass and carbon content in tropical forest of Central Kalimantan. Journal of Applied Sciences in Environmental Sanitation, 2(1), 7-12.
Maltby, E., & Immirzi, P. (1993). Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere, 27(6), 999-1023.
Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427-434.
Nelson, B. W., Mesquita, R., Pereira, J. L. G., Garcia Aquino de Souza, S., Teixeira Batista, G., & Bovino Couto, L. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(1-3), 149-167.
Nogueira, E. M., Fearnside, P. M., & Nelson, B. W. (2008). Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256(5), 990-996.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., & Keizer, E. W. H. (2008). Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256(11), 1853-1867.
Page, S. E., Rieley, J. O., Shotyk, W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1391), 1885–1897.
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 29-30.
Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45, 573-593.
Pilli, R., Anfodillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237(1-3), 583-593.
Posa, M. R. C., Wijedasa, L. S., & Corlett, R. T. (2011). Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience, 61(1), 49-57. doi:10.1525/bio.2011.61.1.10
Rieley, J. O. (2007). Tropical peatland -The amazing dual ecosystem: Co-existence and mutual benefit. In J. O. Rieley, C. J. Banks & B. Radjagukguk (Eds.), Carbon-climate-human interaction on tropical peatland. Proceedings of The International Symposium and Workshop on Tropical Peatland, (pp. 339). Yogyakarta, 27-29 August 2007: EU CARBOPEAT and RESTORPEAT Partnership, Gadjah Mada University, Indonesia and University of Leicester, United Kingdom.
Rieley, J. O., & Page, S. E. (Eds.). (2005). Wise use of tropical peatlands: focus on Southeast Asia: ALTERRA-Wageningen University and Research Centre and the EU INCO-STRAPEAT and RESTORPEAT Partnerships.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, Early Edition, 1-6. doi:10.1073/pnas.1019576108
Saatchi, S. S., Houghton, R. A., Dos Santos Alvala, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13(4), 816-837. doi: 10.1111/j.1365-2486.2007.01323.x
Segura, M., & Kanninen, M. (2005). Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica. Biotropica, 37(1), 2-8. doi: 10.1111/j.1744-7429.2005.02027.x
Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2-3), 299-309.
Snowdon, P. (1991). A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720-724.
Solichin, Lingenfelder, M., & Steinmann, K. H. (2011). Tier 3 biomass assessment for baseline emission in Merang peat swamp forest Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Sorensen, K. W. (1993). Indonesian peat swamp forests and their role as a carbon sink. Chemosphere, 27(6), 1065-1082.
SPSS Inc. (2005). SPSS Base 14.0 User's Guide. Chicago, IL: SPSS Inc.
Tan, A., Hutabarat, J., & Tjawikrama, D. (2011). Above ground biomass content on Sungai Putri peatland forest, West Kalimantan-Indonesia Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Tawaraya, K., Takaya, Y., Turjaman, M., Tuah, S. J., Limin, S. H., Tamai, Y., & Osaki, M. (2003). Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 182(1-3), 381-386.
Ter-Mikaelian, M. T., & Korzukhin, M. D. (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97(1), 1-24.
Uryu, Y., Mott, C., Foead, N., Yulianto, K., Budiman, A., Setiabudi, & Stuwe, M. (2008). Deforestation, Forest Degradation, Biodiversity Loss and CO2 Emissions in Riau, Sumatra, Indonesia. Jakarta, Indonesia: WWF Indonesia Technical Report.
Verwer, C. C., & Meer, P. J. v. d. (2010). Carbon pools in tropical peat forest - Toward a reference value for forest biomass carbon in relatively undisturbed peat swamp forests in Southeast Asia (pp. 67pp). Wageningen, The Netherlands: Alterra, Alterra-report 2108.
Wahyunto, Dariah, A., & Agus, F. (2010). Distribution, Properties, and Carbon Stock of Indonesian Peatland. In Z.-S. Chen & F. Agus (Eds.), Proceeding of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, Bogor, Indonesia, September 28-29, 2010, (pp. 187-204). Bogor, Indonesia: Indonesian Soil Research Institute, Indonesia, Food & Fertilizer Technology Center, Taiwan and National Institute for Agro-Environmental Sceinces, Japan.
Wahyunto, Heryanto, B., Bekti, H., & Widiastuti, F. (2006). Peta-peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua/Maps of Peatlands Distribution, Area and Carbon Content in Papua, 2000-2001 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., & Subagjo, H. (2003). Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatera/Maps of Area of Peatlands Distribution and Carbon Content in Sumatera, 1990-2002 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., & Subagjo, H. (2004). Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Pulau Kalimantan/Maps of Peatlands Distribution, Area and Carbon Content in Kalimantan, 2000-2002 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., Suparto, & Subagjo, H. (2005). Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan. Bogor, Indonesia: Climate Change, Forests and Peatlands in Indonesia Project. Wetlands International-Indonesia Programme and Wildlife Habitat Canada.
Wahyunto, & Suryadiputra, I. N. N. (2008). Peatland Distribution in Sumatra and Kalimantan - Explanation of its data sets including source of information, accuracy, data constraints and gaps (pp. 64pp). Bogor, Indonesia: Wetlands International - Indonesia Programme.
Wang, C. (2006). Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16.
Wijaya, A., Kusnadi, S., Gloaguen, R., & Heilmeier, H. (2010). Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. Journal of Forestry Research, 21(1), 1-12. doi: 10.1007/s11676-010-0001-7
Wösten, J. H. M., Berg, J. V. D., Van Eijk, P., Gevers, G. J. M., Giesen, W. B. J. T., Hooijer, A., & Wibisono, I. T. (2006). Interrelationships between Hydrology and Ecology in Fire Degraded Tropical Peat Swamp Forests. International Journal of Water Resources Development, 22(1), 157-174.
Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA, 73(2), 212-224.
Yamakura, T., Hagihara, A., Sukardjo, S., & Ogawa, H. (1986). Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Plant Ecology, 68(2), 71-82.
Zianis, D. (2008). Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256(6), 1400-1407.
Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2-3), 311-332.
Zianis, D., Muukkonen, P., Makipaa, R., & Mencuccini, M. (2005). Biomass and stem volume equations for tree species in Europe: The Finnish Society of Forest Science, The Finnish Forest Research Institute.
DOI: http://dx.doi.org/10.20886/ijfr.2014.1.1.47-65
For further details log on website :
http://ejournal.forda-mof.org/ejournal-litbang/index.php/IJFR/article/view/26
No comments:
Post a Comment