Blog List

Wednesday 26 April 2017

Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo

Author
Aurélie ShapiroNaikoa N. Aguilar-AmuchasteguiPatrick P. Hostert and Jean-François Bastin

Abstract: Background: Recent studies have shown that fragmentation is an increasing threat to global forests, which has major impacts on biodiversity and the important ecosystem services provided by forested landscapes. Several tools have been developed to evaluate global patterns of fragmentation, which have potential applications for REDD+. We study how canopy height and above ground biomass (AGB) change across several categories of forest edges determined by fragmentation analysis. We use Democratic Republic of Congo (DRC) as an example. Results: An analysis of variance of different edge widths and airborne estimated canopy height found that canopy heights were significantly different in forest edges at a distance of 100 m from the nonforest edge. Biomass was significantly different between fragmentation classes at an edge distance of 300 m. Core forest types were found to have significantly higher canopy height and greater AGB than forest edges and patches, where height and biomass decrease significantly as the level of fragmentation increases. A change analysis shows that deforestation and degradation are increasing over time and biomass loss associated with degradation account for at least one quarter of total loss. We estimate that about 80 % of primary forests are intact, which decreases 3.5 % over the 15 year study period, as primary forest is either deforested or transitioned to forest edge. While the carbon loss per hectare is lower than that of deforestation, degradation potentially affects up to three times more area than deforestation alone. Conclusions: When defining forest degradation by decreased biomass without any loss in forest area, assessing transitions of core forest to edges over time can contribute an important element to REDD+MRV systems. The estimation of changes between different forest fragmentation types and their associated biomass loss can provide an estimate of degradation carbon emission factors. Forest degradation and emissions due to fragmentation are often underestimated and should comprise an essential component of MRV systems.
Keywords: BiomassConservationEmissionsForest degradationFragmentationREDD (search for similar items in EconPapers)
Date: 2016-12
Note: SCOPUS: ar.j
References: Add references at CitEc
Citations Track citations by RSS feed
Published in: Carbon Balance and Management (2016) v.11 n° 1
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text
Ordering information: This working paper can be ordered from
http://hdl.handle.ne ... lb.ac.be:2013/242257
Access Statistics for this paper
More papers in ULB Institutional Repository from ULB -- Universite Libre de Bruxelles Contact information at EDIRC.
Series data maintained by Benoit Pauwels (bpauwels@ulb.ac.be).

For further details log on website :
http://econpapers.repec.org/paper/ulbulbeco/2013_2f242257.htm

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...