EUROPEAN JOURNAL OF ENTOMOLOGY
Eur. J. Entomol. 107 (1): 89-99, 2010 | 10.14411/eje.2010.012
References
For further details log on website:
http://www.eje.cz/artkey/eje-201001-0012_species_coexistence_patterns_in_a_mycophagous_insect_community_inhabiting_the_wood-decaying_bracket_fungus_cryp.php
Eur. J. Entomol. 107 (1): 89-99, 2010 | 10.14411/eje.2010.012
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
A study of the insect community inhabiting the wood-decaying bracket fungus, Cryptoporus volvatus was used to test two hypotheses proposed to account for the competitive coexistence of species in insect communities in patchy environments, niche partitioning and spatial mechanisms. A total of 8990 individuals belonging to 17 insect species emerged from 438 sporocarps (patches) collected from the field. Insect species richness increased and then declined with increase in the total insect biomass reared from a sporocarp, suggesting the potential importance of interspecific competition. Successional niche partitioning explained the spatial distribution of the four specialist species. The aggregation model of coexistence satisfactorily explained the stable coexistence of the species. The specialist species displayed higher population persistence than the generalists. Simulation studies suggest that restricted movements of adults could override patch-level larval aggregation. The effect of such restricted movements on stabilizing coexistence in fungus-insect communities has not been previously appreciated. These findings suggest that spatial mechanisms play a crucial role in the competitive coexistence of the species in the mycophagous insect communities inhabiting bracket fungi.
Keywords: Mycophagous insect, Basidiomycota, Polyporaceae, Cryptoporus volvatus, aggregation model of coexistence, competitive coexistence, patchy environment, spatial mechanism
References
- ABRAMS P.A. 1988: Resource productivity-consumer species diversity: simple models of competition in spatially heterogeneous environments. Ecology 69: 1418-1433
- ASHE J.S. 1984: Major features of the evolution of relationships between Gyrophaenine Staphylinid beetles (Coleoptera: Staphylinidae: Aleocharinae) and fresh mushrooms. In Wheeler Q. & Blackwell M. (eds): Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press, New York, pp. 227-255
- ATKINSON W.D. & SHORROCKS B. 1981: Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50: 461-471
- CONNELL J.H. 1980: Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131-138
- CZADO C., ERHARDT V., MIN A. & WAGNER S. 2007: Zeroinflated generalized Poisson models with regression effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates. Stat. Model. 7: 125
- GILBERTSON R.L. & RYVARDEN L. 1986: North American Polypores. Vol. 1. Fungiflora, Oslo, p. 80
- GILPIN M.E., CARPENTER M.P. & POMERANTZ M.J. 1986: The assembly of a laboratory community: multispecies competition in Drosophila. In Diamond J. & Case T.J. (eds): Community Ecology. Harper and Row, New York, pp. 23-40
- GRIMALDI D. 1985: Niche separation and competitive coexistence in mycophagous Drosophila (Diptera: Drosophilidae). Proc. Entomol. Soc. Wash. 87: 498-511
- GUEVARA R., HUTCHESON K.A., MEE A.C., RAYNER A.D.M. & REYNOLDS S.E. 2000: Resource partitioning of the host fungus Coriolus versicolor by two ciid beetles: the role of odour compounds and host ageing. Oikos 91: 184-194
- HACKMAN W. & MEINANDER M. 1979: Diptera feeding as larvae on macrofungi in Finland. Ann. Zool. Fenn. 16: 50-83
- HANSKI I. 1989: Fungivory: fungi, insects, and ecology. In Wilding N., Collins N.M., Hammond P.M. & Webber J.F. (eds): Insect-Fungus Interactions. Royal Entomoloigcal Society of London, Symposium. Academic Press, London, pp. 25-61
- HARRINGTON T.C. 1980: Release of airborne basidiospores from the pouch fungus, Cryptoporus volvatus. Mycologia 72: 926-936
- HARTLEY S. & SHORROCKS B. 2002: A general framework for the aggregation model of coexistence. J. Anim. Ecol. 71: 651-662
- HEATWOLE H. & HEATWOLE A. 1968: Movements, host-fungus preferences, and longevity of Bolitotherus cornutus (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 61: 18-23
- INOUYE B.D. 1999: Integrating nested spatial scales: implications for the coexistence of competitors on a patchy resource. J. Anim. Ecol. 68: 150-162
- IVES A.R. 1991: Aggregation and coexistence in a carrion fly community. Ecol. Monogr. 61: 75-94
- IVES A.R. & MAY R.M. 1985: Competition within and between species in a patchy environment: Relations between microscopic and macroscopic models. J. Theor. Biol. 115: 65-92
- JAENIKE J. 1978: Host selection by mycophagous Drosophila. Ecology 59: 1286-1288
- JONSELL M. & NORDLANDER G. 2004: Host selection patterns in insects breeding in bracket fungi. Ecol. Entomol. 29: 697-705
- JONSELL M., NORDLANDER G. & JONSSON M. 1999: Colonization patterns of insects breeding in wood-decaying fungi. J. Insect Conserv. 3: 145-161
- JONSELL M., SCHROEDER M. & LARSSON T. 2003: The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. Ecography 26: 421-428
- JONSSON M. 2003: Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. Ecol. Entomol. 28: 159-167
- KADOWAKI K. 2009: Behavioral observation of two fungivorous beetles (Coleoptera: Tenebrionidae) on the wood-decaying bracket fungus Cryptoporus volvatus. Entomol. Sci. (in press)
- KIMURA M.T. 1980: Evolution of food preferences in fungusfeeding Drosophila: an ecological study. Evolution 34: 1009-1018
- KOMONEN A. 2001: Structure of insect communities inhabiting old-growth forest specialist bracket fungi. Ecol. Entomol. 26: 63-75
- KOMONEN A. 2003a: Distribution and abundance of insect fungivores in the fruiting bodies of Fomitopsis pinicola. Ann. Zool. Fenn. 40: 495-504
- KOMONEN A. 2003b: Hotspots of insect diversity in boreal forests. Conserv. Biol. 17: 976-981
- KOMONEN A. 2008: Colonization experiment of fungivorous beetles (Ciidae) in a lake-island system. Entomol. Tidskr. 129: 141-145
- KOMONEN A. & KOUKI J. 2005: Occurrence and abundance of fungus-dwelling beetles (Ciidae) in boreal forests and clearcuts: habitat associations at two spatial scales. Anim. Biodivers. Conserv. 28: 137-147
- KOMONEN A., IKAVALKO J. & WEIYING W. 2003: Diversity patterns of fungivorous insects: comparison between glaciated vs. refugial boreal forests. J. Biogeogr. 30: 1873-1881
- KRIJGER C.L. & SEVENSTER J.G. 2001: Higher species diversity explained by stronger spatial aggregation across six neotropical Drosophila communities. Ecol. Lett. 4: 106
- LAWRENCE J.F. 1973: Host preference in ciid beetles (Coleoptera: Ciidae) inhabiting the fruiting-bodies of Basidiomycetes in North America. Bull. Mus. Comp. Zool. 145:163-212
- MATTHEWMAN W.G. & PIELOU D.P. 1971: Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Can. Entomol. 103: 775-847
- ORLEDGE G.M. & REYNOLDS S.E. 2005: Fungivore host-use groups from cluster analysis: patterns of utilisation of fungal fruiting bodies by ciid beetles. Ecol. Entomol. 30: 620-641
- PAVIOUR-SMITH K. 1960: The fruiting-bodies of macrofungi as habitats for beetles of the family Ciidae (Coleoptera). Oikos 11: 43-71
- PIELOU D.P. & VERMA A.N. 1968: The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in eastern Canada. Can. Entomol. 100: 1179-1199.
- R DEVELOPMENT CORE TEAM 2008: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
- RUKKE B.A. & MIDTGAARD F. 1998: The importance of scale and spatial variables for the fungivorous beetle Bolitophagus reticulatus (Coleoptera, Tenebrionidae) in a fragmented forest landscape. Ecography 21: 561-572
- SETSUDA K. 1993: The component and structure of the beetle community inhabiting fruit bodies of wood-rotting fungi. Akitu (Suppl. No. 1): 1-21
- SETSUDA K. 1995: Ecological study of beetles inhabiting Cryptoporus volvatus (PECK) SHEAR (II): Relationship between development of the basidiocarps and life cycles of five major species of beetle inhabiting the fungus, with discussion of the spore dispersal. Jap. J. Entomol. 63: 609-620
- SEVENSTER J.G. 1996: Aggregation and coexistence. I. Theory and analysis. J. Anim. Ecol. 65: 297-307
- SEVENSTER J.G. & VAN ALPHEN J. 1996: Aggregation and coexistence. II. A neotropical Drosophila community. J. Anim. Ecol. 65: 308-324
- SHORROCKS B., ATKINSON W. & CHARLESWORTH P. 1979: Competition on a divided and ephemeral resource. J. Anim. Ecol. 48: 899-908
- SHORROCKS B., ROSEWELL J. & EDWARDS K. 1990: Competition on a divided and ephemeral resource: testing the assumptions. II. Association. J. Anim. Ecol. 59: 1003-1017
- TAKAHASHI K.H. & KIMURA M.T. 2005: Intraspecific and interspecific larval interaction in Drosophila assessed by integrated fitness measure. Oikos 111: 574-581
- TAKAHASHI K.H., TUNO N. & KAGAYA T. 2005a: Abundance of mycophagous arthropods present on different species of fungi in relation to resource abundance at different spatial scales. Eur. J. Entomol. 102: 39-46
- TAKAHASHI K.H., TUNO N. & KAGAYA T. 2005b: The relative importance of spatial aggregation and resource partitioning on the coexistence of mycophagous insects. Oikos 109: 125-134
- THUNES K.H., MIDTGAARD F. & GJERDE I. 2000: Diversity of coleoptera of the bracket fungus Fomitopsis pinicola in a Norwegian spruce forest. Biodivers. Conserv. 9: 833-852
- TODA M.J., KIMURA M.T. & TUNO N. 1999: Coexistence mechanisms of mycophagous drosophilids on multispecies fungal hosts: aggregation and resource partitioning. J. Anim. Ecol. 68: 794-803
- VAN TEEFFELEN A.J.A. & OVASKAINEN O. 2007: Can the cause of aggregation be inferred from species distributions? Oikos 116: 4-16
- WERTHEIM B., SEVENSTER J.G., EIJS I.E.M. & VAN ALPHEN J.J.M. 2000: Species diversity in a mycophagous insect community: The case of spatial aggregation vs. resource partitioning. J. Anim. Ecol. 69: 335-351
- YAMASHITA S. & HIJII N. 2007: The role of fungal taxa and developmental stage of mushrooms in determining the composition of the mycophagous insect community in a Japanese forest. Eur. J. Entomol. 104: 225-233
For further details log on website:
http://www.eje.cz/artkey/eje-201001-0012_species_coexistence_patterns_in_a_mycophagous_insect_community_inhabiting_the_wood-decaying_bracket_fungus_cryp.php
No comments:
Post a Comment