Blog List

Wednesday, 17 August 2016

Low intra-tree variability in resistance to embolism in four Pinaceae species

Published Date
Volume 73, Issue 3, pp 681-689
First online: 

Title 

Low intra-tree variability in resistance to embolism in four Pinaceae species

  • Author 
  • Pauline S. Bouche
  • Steven Jansen
  • Julia Cruz Sabalera
  • Hervé Cochard
  • Régis Burlett
  • Sylvain Delzon


Abstract 

Key message

Variability of embolism resistance within individual trees was assessed in four Pinaceae species by using a single method of measurementthe Cavitron. Contrary to what has been previously observedour findings show a small variability in embolism resistance within and between organs. Indeedwe found (i) a lack of variability between branches within the crownand (ii) that roots and trunks are either equally resistant or slightly more vulnerable to embolism than branches. This contradicts the vulnerability segmentation hypothesis proposed in the early 1990s. This paper also demonstrates that only few branches are necessary to determine the embolism resistance of a given tree.

Context

Embolism formation in xylem has an important impact on plant growth and survival. Since most studies on xylem embolism resistance focus on branches, it remains questionable how the entire plant deals with embolism across organs.

Aims

In this study, we aimed to evaluate the variability of embolism resistance within a given organ and between different organs within a single tree.

Methods

Based on the Cavitron method, we estimated the intra-organ and the intra-plant variability of embolism resistance for four Pinaceae species. In addition, we compared pit anatomical characters for wood of all organs and species.

Results

We found no variability of embolism resistance for a given organ within a tree. At the tree level, trunks and roots were either equally or more vulnerable to embolism than branches. For all species, organs that showed a similar range of embolism resistance presented similar torus-aperture overlap values. However, the least negative P 50value for roots of Pinus pinaster was associated with the lowest torus-aperture overlap value.

Conclusion

Our findings suggest that P 50 values are constrained within a particular organ and that intra-tree variation in embolism resistance is less substantial than previously reported. Moreover, our data do not support the vulnerability segmentation hypothesis which suggests that distal organs are more vulnerable to xylem embolism.

Handling Editor: Erwin Dreyer

References

  1. Anderegg WRI (2014) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol 205:1008–1014. doi:10.​1111/​nph.​12907 CrossRefPubMed
  2. Barigah TS, Ibrahim T, Bogard A, Faivre-Vuillin B, Lagneau LA, Montpied P, Dreyer E (2006) Irradiance induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species. Tree Physiol 26:1505–1516CrossRefPubMed
  3. Barigah TS, Bonhomme M, Lopez D, Traore A, Douris M, Venisse JS, Cochard H, Badel E (2013) Modulation of bud survival in Populus nigra sprouts in response to water stress-induced embolism. Tree Physiol 33:261–274. doi:10.​1093/​aob/​mct204 CrossRefPubMed
  4. Bouche PS, Larter M, Domec J-C, Burlett R, Gasson P, Jansen S, Delzon S (2014) A broad survey of hydraulic and mechanical safety in the xylem of conifers. J Exp Bot 65:4419–4431. doi:10.​1093/​jxb/​eru218 CrossRefPubMedPubMedCentral
  5. Bouche PS, Jansen S, Cochard H, Burlett R, Capdeville G, Delzon S (2015) Embolism resistance of conifer roots can be accurately measured with the flow-centrifuge method. J Plant Hydraulics 2:002CrossRef
  6. Bouche PS, Delzon S, Badel E, Burlett R, Cochard H, Lavigne B, Mayr S, Zufferey V, Choat B, Brodribb TJ, Torres-Ruiz JM, Charra-Vaskou K, Li S, Morris H, Jansen S (2016) Are needles of Pinus pinaster more vulnerable to embolism than branches? New insights from x-ray computed tomography. Plant Cell Environ. doi:10.​1111/​pce.​12680 PubMed
  7. Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584. doi:10.​1104/​pp.​108.​129783 CrossRefPubMedPubMedCentral
  8. Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010) Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542. doi:10.​1111/​j.​1469-8137.​2010.​03393.​x CrossRefPubMed
  9. Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.​1038/​nature11688 PubMed
  10. Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressures. Plant Cell Environ 25:815–819CrossRef
  11. Cochard H, Lemoine D, Dreyer E (1999) The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ 22:101–108CrossRef
  12. Cochard H, Coll L, Le Roux X, Ameglio T (2002) Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol 128:282–290. doi:10.​1104/​pp.​010400 CrossRefPubMedPubMedCentral
  13. Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Ameglio T (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418. doi:10.​1111/​j.​1399-3054.​2005.​00526.​xCrossRef
  14. Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 15:4779–4791. doi:10.​1093/​jxb/​ert193
  15. Dalla-Salda G, Martínez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For Ecol Manag 257:182–189. doi:10.​1016/​j.​foreco.​2008.​08.​019 CrossRef
  16. Delzon S, Sartore M, Burlett R, Dewar R, Loustau D. (2004) Hydraulic responses to height growth in maritime pine trees. Plant Cell Environ 27: 1077–1087. doi:10.​1111/​j.​1365-3040.​2004.​01213.​x
  17. Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111. doi:10.​1111/​j.​1365-3040.​2010.​02208.​x CrossRefPubMedPubMedCentral
  18. Delzon S, Cochard H. (2014) Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytol 203:355-358. 10.​1111/​nph.​12798
  19. Domec JC, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53:2369–2379. doi:10.​1093/​jxb/​erf100 CrossRefPubMed
  20. Domec J-C, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600CrossRefPubMed
  21. Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. PNAS 105:12069–12074. doi:10.​1073/​pnas.​0710418105 CrossRefPubMedPubMedCentral
  22. Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686. doi:10.​1111/​j.​1469-8137.​2009.​02783.​x CrossRefPubMed
  23. Herbette S, Wortemann R, Awad H, Huc R, Cochard H, Barigah TS (2010) Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability. Tree Physiol 30:1448–1455. doi:10.​1093/​treephys/​tpq079 CrossRefPubMed
  24. Hukin D, Cochard H, Dreyer E, Le Thiec D, Bogeat-Triboulot MB (2005) Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? J Exp Bot 56:2003–2010. doi:10.​1093/​jxb/​eri198 CrossRefPubMed
  25. Jansen S, Schuldt B, Choat B (2015) Current controversies and challenges in applying plant hydraulic techniques. New Phytol 205:961–964. doi:10.​1111/​nph.​13229
  26. Johnson DM, Woodruff DR, Mcculloh K, Meinzer FC (2009) Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiol 29:879–887. doi:10.​1093/​treephys/​tpp031
  27. Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci 195:48–53. doi:10.​1016/​j.​plantsci.​2012.​06.​010 CrossRefPubMed
  28. Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 6:e23476. doi:10.​1371/​journal.​pone.​0023476 CrossRefPubMedPubMedCentral
  29. Lamy J-B, Delzon S, Bouche P, Alia R, Vendramin GG, Cochard H, Plomion C (2014) Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol 201:874–888. doi:10.​1111/​nph.​12556 CrossRefPubMed
  30. Larter M, Brodribb TJ, Pfautsch S, Burlett R, Cochard H, Delzon S (2015) Extreme aridity pushes trees to their physical limits. Plant Physiol 66:4643–4652. doi:10.​1104/​pp.​15.​00223
  31. Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85:2184–2199. doi:10.​1890/​02-0538
  32. Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecology 133:19–29. doi:10.​1007/​s00442-002-1009-2 CrossRef
  33. McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014) The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant Cell Environ 37:1171–1183. doi:10.​1111/​pce.​12225CrossRefPubMed
  34. Novick KA, Miniat CF, Vose JM (2016) Drought limitations to leaf‐level gas exchange: results from a model linking stomatal optimization and cohesion–tension theory. Plant Cell Environ 39:583–596. doi:10.​1111/​pce.​12657CrossRefPubMed
  35. Pammenter N, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593CrossRefPubMed
  36. Pittermann J, Choat B, Jansen S, Stuart S, Lynn L, Dawson TE (2010) The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiol 153:1919–1931. doi:10.​1104/​pp.​110.​158824 CrossRefPubMedPubMedCentral
  37. Sáenz-Romero C, Lamy J-B, Loya-Rebollar E, Plaza-Aguilar A, Burlett R, Lobit P, Delzon S (2013) Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient. Acta Physiol Plant 35:2905–2913. doi:10.​1007/​s11738-013-1321-y CrossRef
  38. Schuldt B, Leuschner C, Brock N, Horna V (2013) Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiol 33:161–174. doi:10.​1093/​treephys/​tps122 CrossRefPubMed
  39. Schulte PJ (2012) Vertical and radial profiles in tracheid characteristics along the trunk of Douglas-fir trees with implications for water transport. Trees 26:421–433. doi:10.​1007/​s00468-011-0603-5 CrossRef
  40. Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol 17:275–280CrossRefPubMed
  41. Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359CrossRef
  42. Tyree MT, Ewers F (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360CrossRef
  43. Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683. doi:10.​1093/​treephys/​tpt030 CrossRefPubMed
  44. Vilagrosa A, Chirino E, Peguero-Pina JJ, Barigah TS, Cochard H, Gil-Pelegrin E (2012) Xylem cavitation and embolism in plants living in water-limited ecosystems. In Plant responses to drought stress. Springer Berlin, Heidelberg, pp 63–109
  45. Zimmermann M (1983) Xylem structure and the ascent of sap. Springer, BerlinCrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0553-6

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...