Blog List

Wednesday, 17 August 2016

Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique

Published Date
Volume 21, Issue 6, pp 4393–4403

Title 
Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique

  • Author 
  • Yan Lu
  • Miao Feng

  • Original Paper
    DOI: 10.1007/s10570-014-0437-6

    Cite this article as: 
    Lu, Y., Feng, M. & Zhan, H. Cellulose (2014) 21: 4393. doi:10.1007/s10570-014-0437-6

    Abstract

    The vacuum impregnation assisted sol–gel technique is a promising and environmentally-friendly method for the inorganic modification of wood by the formation of wood-inorganic composites. However, vacuum impregnation is relatively cumbersome and time-consuming. In this study, SiO2–wood composites were prepared by an ultrasonic-assisted sol–gel method, which is an innovative and simple method. Using this method, we found an increase in the degree of silicon incorporation into the cell walls of the wood. The impregnation of silica inside the cell walls were verified by Fourier-transform infrared spectra, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Leaching test proved that the internal cross-linking silica is stably bonded to the wood cell walls. This modified method significantly reduced the hygroscopicity of the wood and consequently improved the mechanical performance of the modified wood. Thermogravimetric and differential thermal analyses showed that the incorporation of silicon retards thermal decomposition and the complete combustion of the wood matrix and it enhances the thermal stability of wood.

    References

    1. Ansell MP (2011) Wood: a 45th anniversary review of JMS papers part 1: the wood cell wall and mechanical properties. J Mater Sci 46(23):7357–7368. doi:10.1007/s10853-011-5856-2CrossRef
    2. Ansell MP (2012) Wood: a 45th anniversary review of JMS papers part 2: wood modification, fire resistance, carbonization, wood–cement and wood–polymer composites. J Mater Sci 47(2):583–598. doi:10.1007/s10853-011-5995-5CrossRef
    3. Bucur V (2005) Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics 43(4):237–239. doi:10.1016/j.ultras.2004.06.008CrossRef
    4. Bussemaker MJ, Xu F, Zhang DK (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23. doi:10.1016/j.biortech.2013.08.106CrossRef
    5. Cappelletto E, Maggini S, Girardi F, Bochicchio G, Tessadri B, Di Maggio R (2013) Wood surface protection with different alkoxysilanes: a hydrophobic barrier. Cellulose 20(6):3131–3141. doi:10.1007/s10570-013-0038-9CrossRef
    6. Chen P, Yu HP, Liu YX, Chen WS, Wang XQ, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157. doi:10.1007/s10570-012-9829-7CrossRef
    7. Devi RR, Maji TK (2011) Chemical modification of simul wood with styreneacrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol 46(1–3):299–315. doi:10.1007/s00226-011-0406-2
    8. Dhyani S, Kamdem DP (2012) Bioavailability and form of copper in wood treated with copper-based preservative. Wood Sci Technol 46(6):1203–1213. doi:10.1007/s00226-012-0475-xCrossRef
    9. Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247(4946):1067–1069. doi:10.1126/science.2309118CrossRef
    10. Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38(12):555–566. doi:10.1007/s00226-004-0257-1CrossRef
    11. Donath S, Militz H, Mai C (2006) Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60(2):210–216. doi:10.1515/HF.2006.035CrossRef
    12. Donath S, Militz H, Mai C (2007) Weathering of silane treated wood. Holz Roh Werkst 65(1):35–42. doi:10.1007/s00107-006-0131-yCrossRef
    13. Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4:370–404
    14. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. doi:10.1007/s10570-013-0030-4CrossRef
    15. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55. doi:10.1016/j.ultsonch.2004.01.037CrossRef
    16. Girardi F, Cappelletto E, Sandak J, Bochicchio G, Tessadri B, Palanti S, Feci E, Di Maggio R (2014) Hybrid organic-inorganic materials as coatings for protecting wood. Prog Org Coat 77(2):449–457. doi:10.1016/j.porgcoat.2013.11.010CrossRef
    17. He Z, Fei Y, Peng Y, Yi S (2013) Ultrasound-assisted vacuum drying of wood: effects on drying time and product quality. BioResources 8(1):855–863CrossRef
    18. Hill CAS (2007) Wood modification: chemical, thermal and other processes. Wiley, West Sussex
    19. Hübert T, Unger B, Bücker M (2010) Sol–gel derived TiO2 wood composites. J Sol–gel Sci Technol 53(2):384–389. doi:10.1007/s10971-009-2107-yCrossRef
    20. Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20(3):1275–1292. doi:10.1007/s10570-013-9892-8CrossRef
    21. Katz JL, Spencer P, Wang Y, Misra A, Marangos O, Friis L (2008) On the anisotropic elastic properties of woods. J Mater Sci 43(1):139–145. doi:10.1007/s10853-007-2121-9CrossRef
    22. Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327. doi:10.1007/s00226-006-0107-4CrossRef
    23. Liu CY, Wang SL, Shi JY, Wang CY (2011) Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Appl Surf Sci 258(2):761–765. doi:10.1016/j.apsusc.2011.08.077CrossRef
    24. Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust 41:56–93. doi:10.1016/j.pecs.2013.11.001CrossRef
    25. Maggini S, Feci E, Cappelletto E, Girardi F, Palanti S, Di Maggio R (2012) (I/O) hybrid alkoxysilane/zirconium-oxocluster copolymers as coatings for wood protection. ACS Appl Mater Int 4(9):4871–4881. doi:10.1021/am301206tCrossRef
    26. Mahltig B, Swaboda C, Roessler A, BÖttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 27:3180–3192. doi:10.1039/b718903fCrossRef
    27. Mahr MS, Hübert T, Sabel M, Schartel B, Bahr H, Militz H (2012a) Fire retardancy of sol–gel derived titania wood–inorganic composites. J Mater Sci 47(19):6849–6861. doi:10.1007/s10853-012-6628-3CrossRef
    28. Mahr MS, Hübert T, Schartel B, Bahr H, Sabel M, Militz H (2012b) Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2–wood composites. J Sol–Gel Sci Technol 64(2):452–464. doi:10.1007/s10971-012-2877-5CrossRef
    29. Mahr MS, Hübert T, Stephan I, Militz H (2013) Decay protection of wood against brown-rot fungi by titanium alkoxide impregnations. Int Biodeter Biodegr 77:56–62. doi:10.1016/j.ibiod.2012.04.026CrossRef
    30. Mai C, Militz H (2004a) Modification of wood with silicon compounds: inorganic silicon compounds and sol–gel systems: a review. Wood Sci Technol 37(5):339–348. doi:10.1007/s00226-003-0205-5CrossRef
    31. Mai C, Militz H (2004b) Modification of wood with silicon compounds: treatment systems based on organic silicon compounds—a review. Wood Sci Technol 37(6):453–461. doi:10.1007/s00226-004-0225-9CrossRef
    32. Mark HF, Kroschwitz JI (1989) Encyclopedia of polymer science and engineering. Wiley, New York
    33. Miyafuji H, Saka S (2001) Na2O–SiO2 wood-inorganic composites prepared by the sol–gel process and their fire-resistant properties. J Wood Sci 47(6):483–489CrossRef
    34. Miyafuji H, Saka S, Yamamoto A (1998) SiO2–P2O5–B2O3 wood–inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung 52:410–416. doi:10.1515/hfsg.1998.52.4.410CrossRef
    35. Najafi A, Golestani-Fard F, Rezaie HR (2011) A study on sol–gel synthesis and characterization of SiC nano powder. J Sol–Gel Sci Technol 59(2):205–214CrossRef
    36. Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrasonic-assisted sol–gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application. Ultrason Sonochem 15(4):649–658. doi:10.1016/j.ultsonch.2007.09.014
    37. Palanti S, Feci E, Predieri G, Vignali F (2012) A wood treatment based on siloxanes and boric acid against fungal decay and coleopter Hylotrupes bajulus. Int Biodeter Biodegr 75:49–54. doi:10.1016/j.ibiod.2012.07.019CrossRef
    38. Paulusse JMJ, Van Beek DJM, Sijbesma RP (2007) Reversible switching of the sol–gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. J Am Chem Soc 129(8):2392–2397. doi:10.1021/ja067523cCrossRef
    39. Prasad K, Pinjari DV, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17(4):697–703. doi:10.1016/j.ultsonch.2010.01.005CrossRef
    40. Pries M, Mai C (2013) Fire resistance of wood treated with a cationic silica sol. Eur J Wood Prod 71(2):237–244. doi:10.1007/s00107-013-0674-7CrossRef
    41. Qin C, Zhang WB (2012) Antibacterial property of titanium alkoxide/poplar wood composite prepared by sol–gel process. Mater Lett 89:101–103. doi:10.1016/j.matlet.2012.08.089CrossRef
    42. Rosenthal M, Bues CT (2010) Longitudinal infiltration of silicon dioxide nanosols in wood of Pinus sylvestris. Eur J Wood Prod 68(3):363–366. doi:10.1007/s00107-010-0455-5CrossRef
    43. Rowell RM (2012) Handbook of wood chemistry and wood composites. Taylor and Francis Group, CRC Press, MadisonCrossRef
    44. Saka S, Ueno T (1997) Several SiO2 wood–inorganic composites and their fire-resisting properties. Wood Sci Technol 31(6):457–466
    45. Saka S, Sasaki M, Tanahashi M (1992) Wood-inorganic composites prepared by sol–gel processing I. wood inorganic composites with porous structure. Mokuzai Gakkaishi 38:1043–1049
    46. Sinn G, Mayer H, Stanzl-Tschegg S (2005) Surface properties of wood and MDF after ultrasonic-assisted cutting. J Mater Sci 40(16):4325–4332. doi:10.1007/s10853-005-1995-7CrossRef
    47. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. doi:10.1146/annurev.matsci.29.1.295CrossRef
    48. Unger B, Bücker M, Reinsch S, Hübert T (2013) Chemical aspects of wood modification by sol–gel-derived silica. Wood Sci Technol 47(1):83–104. doi:10.1007/s00226-012-0486-7CrossRef
    49. Wang XQ, Liu JL, Chai YB (2012) Thermal, mechanical, and moisture absorption properties of wood–TiO2 composites prepared by a sol–gel process. BioResources 7:893–901
    50. Yi TF, Hu XG, Gao K (2006) Synthesis and physicochemical properties of LiAl0.05Mn1.95O4cathode material by the ultrasonic-assisted sol–gel method. J Power Sources 162(1):636–643CrossRef
    51. Yuan W, Yan J, Tang ZY, Ma L (2012) Synthesis of high performance Li3V2(PO4)3/C cathode material by ultrasonic-assisted sol–gel method. Ionics 18(3):329–335. doi:10.1007/s11581-011-0652-1CrossRef
    52. Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pretreatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101(24):9792–9796. doi:10.1016/j.biortech.2010.07.074CrossRef


    For further details log on website :
    http://link.springer.com/article/10.1007%2Fs10570-014-0437-6

    No comments:

    Post a Comment

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...