Published Date
, Volume 21, Issue 6, pp 4393–4403
Title
Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique
Author
Yan Lu
Miao Feng
Original Paper
Cite this article as:
Lu, Y., Feng, M. & Zhan, H. Cellulose (2014) 21: 4393. doi:10.1007/s10570-014-0437-6
Abstract
The vacuum impregnation assisted sol–gel technique is a promising and environmentally-friendly method for the inorganic modification of wood by the formation of wood-inorganic composites. However, vacuum impregnation is relatively cumbersome and time-consuming. In this study, SiO2–wood composites were prepared by an ultrasonic-assisted sol–gel method, which is an innovative and simple method. Using this method, we found an increase in the degree of silicon incorporation into the cell walls of the wood. The impregnation of silica inside the cell walls were verified by Fourier-transform infrared spectra, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Leaching test proved that the internal cross-linking silica is stably bonded to the wood cell walls. This modified method significantly reduced the hygroscopicity of the wood and consequently improved the mechanical performance of the modified wood. Thermogravimetric and differential thermal analyses showed that the incorporation of silicon retards thermal decomposition and the complete combustion of the wood matrix and it enhances the thermal stability of wood.
References
For further details log on website :
http://link.springer.com/article/10.1007%2Fs10570-014-0437-6
, Volume 21, Issue 6, pp 4393–4403
Title
Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique
Original Paper
- First Online:
- 14 September 2014
DOI: 10.1007/s10570-014-0437-6
Abstract
The vacuum impregnation assisted sol–gel technique is a promising and environmentally-friendly method for the inorganic modification of wood by the formation of wood-inorganic composites. However, vacuum impregnation is relatively cumbersome and time-consuming. In this study, SiO2–wood composites were prepared by an ultrasonic-assisted sol–gel method, which is an innovative and simple method. Using this method, we found an increase in the degree of silicon incorporation into the cell walls of the wood. The impregnation of silica inside the cell walls were verified by Fourier-transform infrared spectra, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Leaching test proved that the internal cross-linking silica is stably bonded to the wood cell walls. This modified method significantly reduced the hygroscopicity of the wood and consequently improved the mechanical performance of the modified wood. Thermogravimetric and differential thermal analyses showed that the incorporation of silicon retards thermal decomposition and the complete combustion of the wood matrix and it enhances the thermal stability of wood.
References
- Ansell MP (2011) Wood: a 45th anniversary review of JMS papers part 1: the wood cell wall and mechanical properties. J Mater Sci 46(23):7357–7368. doi:10.1007/s10853-011-5856-2CrossRef
- Ansell MP (2012) Wood: a 45th anniversary review of JMS papers part 2: wood modification, fire resistance, carbonization, wood–cement and wood–polymer composites. J Mater Sci 47(2):583–598. doi:10.1007/s10853-011-5995-5CrossRef
- Bucur V (2005) Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics 43(4):237–239. doi:10.1016/j.ultras.2004.06.008CrossRef
- Bussemaker MJ, Xu F, Zhang DK (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23. doi:10.1016/j.biortech.2013.08.106CrossRef
- Cappelletto E, Maggini S, Girardi F, Bochicchio G, Tessadri B, Di Maggio R (2013) Wood surface protection with different alkoxysilanes: a hydrophobic barrier. Cellulose 20(6):3131–3141. doi:10.1007/s10570-013-0038-9CrossRef
- Chen P, Yu HP, Liu YX, Chen WS, Wang XQ, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157. doi:10.1007/s10570-012-9829-7CrossRef
- Devi RR, Maji TK (2011) Chemical modification of simul wood with styreneacrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol 46(1–3):299–315. doi:10.1007/s00226-011-0406-2
- Dhyani S, Kamdem DP (2012) Bioavailability and form of copper in wood treated with copper-based preservative. Wood Sci Technol 46(6):1203–1213. doi:10.1007/s00226-012-0475-xCrossRef
- Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247(4946):1067–1069. doi:10.1126/science.2309118CrossRef
- Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38(12):555–566. doi:10.1007/s00226-004-0257-1CrossRef
- Donath S, Militz H, Mai C (2006) Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60(2):210–216. doi:10.1515/HF.2006.035CrossRef
- Donath S, Militz H, Mai C (2007) Weathering of silane treated wood. Holz Roh Werkst 65(1):35–42. doi:10.1007/s00107-006-0131-yCrossRef
- Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4:370–404
- French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. doi:10.1007/s10570-013-0030-4CrossRef
- Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55. doi:10.1016/j.ultsonch.2004.01.037CrossRef
- Girardi F, Cappelletto E, Sandak J, Bochicchio G, Tessadri B, Palanti S, Feci E, Di Maggio R (2014) Hybrid organic-inorganic materials as coatings for protecting wood. Prog Org Coat 77(2):449–457. doi:10.1016/j.porgcoat.2013.11.010CrossRef
- He Z, Fei Y, Peng Y, Yi S (2013) Ultrasound-assisted vacuum drying of wood: effects on drying time and product quality. BioResources 8(1):855–863CrossRef
- Hill CAS (2007) Wood modification: chemical, thermal and other processes. Wiley, West Sussex
- Hübert T, Unger B, Bücker M (2010) Sol–gel derived TiO2 wood composites. J Sol–gel Sci Technol 53(2):384–389. doi:10.1007/s10971-009-2107-yCrossRef
- Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20(3):1275–1292. doi:10.1007/s10570-013-9892-8CrossRef
- Katz JL, Spencer P, Wang Y, Misra A, Marangos O, Friis L (2008) On the anisotropic elastic properties of woods. J Mater Sci 43(1):139–145. doi:10.1007/s10853-007-2121-9CrossRef
- Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327. doi:10.1007/s00226-006-0107-4CrossRef
- Liu CY, Wang SL, Shi JY, Wang CY (2011) Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Appl Surf Sci 258(2):761–765. doi:10.1016/j.apsusc.2011.08.077CrossRef
- Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust 41:56–93. doi:10.1016/j.pecs.2013.11.001CrossRef
- Maggini S, Feci E, Cappelletto E, Girardi F, Palanti S, Di Maggio R (2012) (I/O) hybrid alkoxysilane/zirconium-oxocluster copolymers as coatings for wood protection. ACS Appl Mater Int 4(9):4871–4881. doi:10.1021/am301206tCrossRef
- Mahltig B, Swaboda C, Roessler A, BÖttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 27:3180–3192. doi:10.1039/b718903fCrossRef
- Mahr MS, Hübert T, Sabel M, Schartel B, Bahr H, Militz H (2012a) Fire retardancy of sol–gel derived titania wood–inorganic composites. J Mater Sci 47(19):6849–6861. doi:10.1007/s10853-012-6628-3CrossRef
- Mahr MS, Hübert T, Schartel B, Bahr H, Sabel M, Militz H (2012b) Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2–wood composites. J Sol–Gel Sci Technol 64(2):452–464. doi:10.1007/s10971-012-2877-5CrossRef
- Mahr MS, Hübert T, Stephan I, Militz H (2013) Decay protection of wood against brown-rot fungi by titanium alkoxide impregnations. Int Biodeter Biodegr 77:56–62. doi:10.1016/j.ibiod.2012.04.026CrossRef
- Mai C, Militz H (2004a) Modification of wood with silicon compounds: inorganic silicon compounds and sol–gel systems: a review. Wood Sci Technol 37(5):339–348. doi:10.1007/s00226-003-0205-5CrossRef
- Mai C, Militz H (2004b) Modification of wood with silicon compounds: treatment systems based on organic silicon compounds—a review. Wood Sci Technol 37(6):453–461. doi:10.1007/s00226-004-0225-9CrossRef
- Mark HF, Kroschwitz JI (1989) Encyclopedia of polymer science and engineering. Wiley, New York
- Miyafuji H, Saka S (2001) Na2O–SiO2 wood-inorganic composites prepared by the sol–gel process and their fire-resistant properties. J Wood Sci 47(6):483–489CrossRef
- Miyafuji H, Saka S, Yamamoto A (1998) SiO2–P2O5–B2O3 wood–inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung 52:410–416. doi:10.1515/hfsg.1998.52.4.410CrossRef
- Najafi A, Golestani-Fard F, Rezaie HR (2011) A study on sol–gel synthesis and characterization of SiC nano powder. J Sol–Gel Sci Technol 59(2):205–214CrossRef
- Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrasonic-assisted sol–gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application. Ultrason Sonochem 15(4):649–658. doi:10.1016/j.ultsonch.2007.09.014
- Palanti S, Feci E, Predieri G, Vignali F (2012) A wood treatment based on siloxanes and boric acid against fungal decay and coleopter Hylotrupes bajulus. Int Biodeter Biodegr 75:49–54. doi:10.1016/j.ibiod.2012.07.019CrossRef
- Paulusse JMJ, Van Beek DJM, Sijbesma RP (2007) Reversible switching of the sol–gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. J Am Chem Soc 129(8):2392–2397. doi:10.1021/ja067523cCrossRef
- Prasad K, Pinjari DV, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17(4):697–703. doi:10.1016/j.ultsonch.2010.01.005CrossRef
- Pries M, Mai C (2013) Fire resistance of wood treated with a cationic silica sol. Eur J Wood Prod 71(2):237–244. doi:10.1007/s00107-013-0674-7CrossRef
- Qin C, Zhang WB (2012) Antibacterial property of titanium alkoxide/poplar wood composite prepared by sol–gel process. Mater Lett 89:101–103. doi:10.1016/j.matlet.2012.08.089CrossRef
- Rosenthal M, Bues CT (2010) Longitudinal infiltration of silicon dioxide nanosols in wood of Pinus sylvestris. Eur J Wood Prod 68(3):363–366. doi:10.1007/s00107-010-0455-5CrossRef
- Rowell RM (2012) Handbook of wood chemistry and wood composites. Taylor and Francis Group, CRC Press, MadisonCrossRef
- Saka S, Ueno T (1997) Several SiO2 wood–inorganic composites and their fire-resisting properties. Wood Sci Technol 31(6):457–466
- Saka S, Sasaki M, Tanahashi M (1992) Wood-inorganic composites prepared by sol–gel processing I. wood inorganic composites with porous structure. Mokuzai Gakkaishi 38:1043–1049
- Sinn G, Mayer H, Stanzl-Tschegg S (2005) Surface properties of wood and MDF after ultrasonic-assisted cutting. J Mater Sci 40(16):4325–4332. doi:10.1007/s10853-005-1995-7CrossRef
- Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. doi:10.1146/annurev.matsci.29.1.295CrossRef
- Unger B, Bücker M, Reinsch S, Hübert T (2013) Chemical aspects of wood modification by sol–gel-derived silica. Wood Sci Technol 47(1):83–104. doi:10.1007/s00226-012-0486-7CrossRef
- Wang XQ, Liu JL, Chai YB (2012) Thermal, mechanical, and moisture absorption properties of wood–TiO2 composites prepared by a sol–gel process. BioResources 7:893–901
- Yi TF, Hu XG, Gao K (2006) Synthesis and physicochemical properties of LiAl0.05Mn1.95O4cathode material by the ultrasonic-assisted sol–gel method. J Power Sources 162(1):636–643CrossRef
- Yuan W, Yan J, Tang ZY, Ma L (2012) Synthesis of high performance Li3V2(PO4)3/C cathode material by ultrasonic-assisted sol–gel method. Ionics 18(3):329–335. doi:10.1007/s11581-011-0652-1CrossRef
- Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pretreatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101(24):9792–9796. doi:10.1016/j.biortech.2010.07.074CrossRef
For further details log on website :
http://link.springer.com/article/10.1007%2Fs10570-014-0437-6
No comments:
Post a Comment