Blog List

Wednesday, 28 December 2016

A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation

Author
Bieby Voijant Tangahu, Siti Rozaimah Sheikh Abdullah, Hassan Basri, Mushrifah Idris, Nurina Anuar, Muhammad Mukhlisin 
International Journal of Chemical Engineering, Volume 2011, pp 1-31; doi:10.1155/2011/939161 


Abstract: Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg) sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.1. IntroductionHeavy metals are among the contaminants in the environment. Beside the natural activities, almost all human activities also have potential contribution to produce heavy metals as side effects. Migration of these contaminants into noncontaminated areas as dust or leachates through the soil and spreading of heavy metals containing sewage sludge are a few examples of events contributing towards contamination of the ecosystems [1]. Several methods are already being used to clean up the environment from these kinds of contaminants, but most of them are costly and far away from their optimum performance. The chemical technologies generate large volumetric sludge and increase the costs [2]; chemical and thermal methods are both technically difficult and expensive that all of these methods can also degrade the valuable component of soils [3]. Conventionally, remediation of heavy-metal-contaminated soils involves either onsite management or excavation and subsequent disposal to a landfill site. This method of disposal solely shifts the contamination problem elsewhere along with the hazards associated with transportation of contaminated soil and migration of contaminants from landfill into an adjacent environment. Soil washing for removing contaminated soil is an alternative way to excavation and disposal to landfill. This method is very costy and produces a residue rich in heavy metals, which will require further treatment. Moreover, these physio-chemical technologies used for soil remediation render the land usage as a medium for plant growth, as they remove all biological activities [1].Recent concerns regarding the environmental contamination have initiated the development of appropriate technologies to assess the presence and mobility of metals in soil [4], water, and wastewater. Presently, phytoremediation has become an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially costeffective. Plants with exceptional metal-accumulating capacity are known as hyperaccumulator plants [5]. Phytoremediation takes the advantage of the unique and selective uptake capabilities of plant root systems, together with the translocation, bioaccumulation, and contaminant degradation abilities of the entire plant body [3].Many species of plants have been successful in absorbing contaminants such as lead, cadmium, chromium, arsenic, and various radionuclides from soils. One of phytoremediation categories, phytoextraction, can be used to remove heavy metals from soil using its ability to uptake metals which are essential for plant growth (Fe, Mn, Zn, Cu, Mg, Mo, and Ni). Some metals with unknown biological function (Cd, Cr, Pb, Co, Ag, Se, Hg) can also be accumulated [5].The objectives of this paper are to discuss the potential of phytoremediation technique on treating heavy metal-contaminated side, to provide a brief view about heavy metals uptake mechanisms by plant, to give some description about the performance of several types of plants to uptake heavy metals and to describe about the fate of heavy metals in plant tissue, especially on arsenic (As), lead (Pb), and mercury (Hg). This study is related to a research project that aims to identify potential plants in tropical country such as Malaysia which can uptake heavy metal contaminants from petrochemical wastewater.2. Heavy Metals: Sources and Effect in theEnvironmentHeavy metals are conventionally defined as elements with metallic properties and an atomic number >20. The most common heavy metal contaminants are Cd, Cr, Cu, Hg, Pb, and Zn. Metals are natural components in soil [6]. Some of these metals are micronutrients necessary for plant growth, such as Zn, Cu, Mn, Ni, and Co, while others have unknown biological function, such as Cd, Pb, and Hg [1].Metal pollution has harmful effect on biological systems and does not undergo biodegradation. Toxic heavy metals such as Pb, Co, Cd can be differentiated from other pollutants, since they cannot be biodegraded but can be accumulated in living organisms, thus causing various diseases and disorders even in relatively lower concentrations [7]. Heavy metals, with soil residence times of thousands of years, pose numerous health dangers to higher organisms. They are also known to have effect on plant growth, ground cover and have a negative impact on soil microflora [8]. It is well known that heavy metals cannot be chemically degraded and need to be physically removed or be transformed into nontoxic compounds [1].2.1. Arsenic (As)Arsenic (atomic number 33) is a silver-grey brittle crystalline solid with atomic weight of 74.9, specific gravity 5.73, melting point 817°C (at 28 atm), boiling point 613°C, and vapor pressure 1 mm Hg at 372°C [9]. Arsenic is a semimetallic element with the chemical symbol “As”. Arsenic is odorless and tasteless. Arsenic can combine with other elements to form inorganic and organic arsenicals [10]. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Inorganic arsenic compounds are mainly used to preserve wood. Organic arsenic compounds are used as pesticides, primarily on cotton plants [11].Arsenic exists in the −3, 0, +3, and +5 valence oxidation states [9], and in a variety of chemical forms in natural waters and sediments [12]. Environmental forms include arsenious acids (H3AsO3, H3AsO3, ), arsenic acids (H3AsO4, , ), arsenites, arsenates, methylarsenic acid, dimethylarsinic acid, and arsine. Two most common forms in natural waters arsenite () and inorganic arsenate (), referred as As3+ and As5+ [9]. From both the biological and the toxicological points of view, arsenic compounds can be classified into three major groups. These groups are inorganic arsenic compounds, organic arsenic compounds, and arsine gas [13]. It is a hard acid and preferentially complexes with oxides and nitrogen. Trivalent arsenites predominate in moderately reducing anaerobic environments such as groundwater [9]. The most common trivalent inorganic arsenic compounds are arsenic trioxide, sodium arsenite, and arsenic trichloride [13]. Trivalent (+3) arsenates include As(OH)3, , AsO2OH2−, and [9]. Arsenite (As(OH)3, As3+) is predominant in reduced redox potential conditions [12].Arsenic is one of the contaminants found in the environment which is notoriously toxic to man and other living organisms [14]. It is a highly toxic element that exists in various species, and the toxicity of arsenic depends on its species. The pH, redox conditions, surrounding mineral composition, and microbial activities affect the form (inorganic or organic) and the oxidation state of arsenic. It is generally accepted that the inorganic species, arsenite [As3+] and arsenate [As5+], are the predominant species in most environments, although the organic ones might also be present [15].In general, inorganic compounds of arsenic are regarded as more highly toxic than most organic forms which are less toxic [10, 14, 16, 17]. The trivalent compounds (arsenites) are more toxic than the pentavalent compounds (arsenates) [16, 17]. It has been reported that As3+ is 4 to 10 times more soluble in water than As5+. However, the trivalent methylated arsenic species have been found to be more toxic than inorganic arsenic because they are more efficient at causing DNA breakdown [17]. Although As5+ tends to be less toxic compared to of As3+, it is thermodynamically more stable due to it predominates under normal conditions and becomes the cause of major contaminant in ground water [14]. Arsenate which is in the pentavalent state (As5+) is also considered to be toxic and carcinogenic to human [18].2.2. Lead (Pb)Lead (Pb), with atomic number 82, atomic weight 207.19, and a specific gravity of 11.34, is a bluish or silvery-grey metal with a melting point of 327.5°C and a boiling point at atmospheric pressure of 1740°C. It has four naturally occurring isotopes with atomic weights 208, 206, 207 and 204 (in decreasing order of abundance). Despite the fact that lead has four electrons on its valence shell, its typical oxidation state is +2 rather than +4, since only two of the four electrons ionize easily. Apart from nitrate, chlorate, and chloride, most of the inorganic salts of lead2+ have poor solubility in water [19]. Lead (Pb) exists in many forms in the natural sources throughout the world and is now one of the most widely and evenly distributed trace metals. Soil and plants can be contaminated by lead from car exhaust, dust, and gases from various industrial sources. Pb2+ was f

For further details log on website :
http://www.scilit.net/article/10.1155/2011/939161

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...