Author
For further details log on website :
http://econpapers.repec.org/article/eeerensus/v_3a60_3ay_3a2016_3ai_3ac_3ap_3a155-172.htm
Ying Ying Tye, Keat Teong Lee, Wan Nadiah Wan Abdullah and Cheu Peng Leh
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, pages 155-172
Abstract: Non-wood lignocellulosic biomass is abundantly available, low cost, easy to process and consists of a short growth and harvest period; therefore, it is introduced as a potential feedstock biomass for bioethanol production. Common non-wood lignocellulosic biomasses are categorised into agricultural residues, native and non-wood plant fibres. The potential of non-wood lignocellulosic biomass as a resource for cellulosic ethanol production are determined and, analyzed in the context of their chemical composition, fibre production yield, total cellulose availability as well as the enzymatic saccharification efficiency after pretreatment. Based on the obtained data, agricultural residues show significant advantages in all contexts over other non-wood lignocellulosic biomasses. Moreover, pretreatment plays an important role in enhancing the enzymatic accessibility and hydrolysability of non-wood biomass. This review found that various pretreatments could be applied to enhance the enzymatic hydrolysability of different biomasses; however the major factors that vary the effectiveness of particular pretreatment on improving of different biomass hydrolysability have not been clearly highlighted. In addition, even though enzymatic saccharification of pretreated biomass is mainly highlighted in most of the cellulosic ethanol studies to evaluate the improvement of biomass hydrolysability, this data is unable to show the total glucose that obtained from the untreated biomass directly. In this study, the importance of total glucose yield is emphasized and it is calculated from various research data by multiplying the solid recovery yield by the enzymatic saccharification yield of the pretreated biomass, as it presents the percentage of the total glucose that could be converted directly from the original biomass. This work verifies that besides enzymatic saccharification yield, the solid recovery yield is also one of the major factors to be identified in cellulosic ethanol study.
Keywords: Agricultural residues; Native plants; Non-wood plant fibres; Pretreatment; Second generation bioethanol; Glucose (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116001027
Full text for ScienceDirect subscribers only
http://www.sciencedirect.com/science/article/pii/S1364032116001027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Series data maintained by Dana Niculescu (repec@elsevier.com).
Series data maintained by Dana Niculescu (repec@elsevier.com).
For further details log on website :
http://econpapers.repec.org/article/eeerensus/v_3a60_3ay_3a2016_3ai_3ac_3ap_3a155-172.htm
No comments:
Post a Comment