Published Date
1 May 2016, Vol.92:384–394, doi:10.1016/j.compositesb.2016.02.051
Title
Developing high-performance hybrid green composites
Received 11 May 2015. Revised 12 November 2015. Accepted 17 February 2016. Available online 26 February 2016.
Abstract
Particleboards made of a mixture of wood particles and short glass fibers as the core and two layers of woven jute fabric as skin layers were fabricated using a vacuum-assisted resin transfer mold. The modulus of rupture (MOR), modulus of elasticity (MOE), and internal bonding (IB) were evaluated as indicators of mechanical performance. The vertical density profile, water absorption, and thickness swelling were analyzed to evaluate the physical performance. The results revealed that the proposed panels have excellent mechanical properties as compared to commercial wood composites. The MOR, MOE, and IB values for commercial particleboard composites are 14.69 MPa, 2.54 GPa, and 0.53 MPa, respectively, whereas the MOR, MOE, and IB for the proposed hybrid structure with zero glass fibers and no skin were 18.04 MPa, 2.99 GPa, and 2.18 MPa. Higher values were obtained by adding short glass fibers or using woven jute fibers as skin or both. The results indicated that the proposed sandwich composites exhibited excellent water resistance and dimensional stability as compared to commercial wood composites. The results also showed that these hybrid green composites with enhanced performance could be used in the construction and automotive industries.
Keywords
- E. Thermosetting resin
- A. Hybrid
- A. Glass fibres
- E. Resin transfer moulding (RTM)
- Green Composites.
- ∗ Corresponding author. Tel.: +90 212 338 24 00; fax: +90 212 338 2424.
For further details log on website :
http://www.sciencedirect.com/science/article/pii/S1359836816001700
No comments:
Post a Comment