Blog List

Sunday, 29 May 2016

Effects of various nanomaterials on the properties of starch/poly(vinyl alcohol) composite films formed by blow extrusion process

Published Date
Volume 24, Issue 8, pp 687-696
First online: 

Title 

Effects of various nanomaterials on the properties of starch/poly(vinyl alcohol) composite films formed by blow extrusion process

  • Author 
  • Wentao Wang
  • Hui Zhang
  • Yangyong Dai
  • Hanxue Hou
  • Haizhou Dong

    Cover Date
    2015-08

    DOI
    10.1007/s13726-015-0359-7

    Print ISSN
    1026-1265

    Online ISSN
    1735-5265

    Publisher
    Springer Berlin Heidelberg

    Author Affiliations
  • 1. Department of Food Science and Engineering, Shandong Agricultural University, Tai’an, 271018, People’s Republic of China


Abstract

Effects of various nanomaterials on the physical and mechanical properties of hydroxypropyl distarch phosphate/poly(vinyl alcohol) (starch/PVA) composite films fabricated by blow extrusion were investigated. The starch/PVA nanocomposite films were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA/DTG), FTIR, and scanning electron microscope (SEM). The nanocomposite films containing nano-CaCO3 and organically modified montmorillonite (OMMT) showed the lowest and highest tensile strengths of 3.72 and 7.04 MPa, respectively. The film containing natural montmorillonite (MMT) exhibited the lowest elongation-at-break of 118.73 %. The film with OMMT exhibited the lowest water vapor permeability of 4.12 × 10−10 g m−1 s−1 Pa−1. Addition of nano-TiO2 to starch/PVA films resulted in a significant decrease in ∆E*(increased clearness). Differential scanning calorimetry (DSC) indicated that the nanocomposite films exhibited higher glass transition temperatures (T g) and lower melting enthalpy compared to the control film. Adding MMT and OMMT to starch/PVA blends increased the thermal stabilities of the films according to the TGA/DTG analysis. Agglomeration of particles was observed in the starch/PVA composite films containing nano-CaCO3 and nano-TiO2while nano-SiO2 and MMT dispersed well in the matrix. On the whole, OMMT was more compatible with starch/PVA blends and served as a better nanomaterial to prepare starch/PVA nanocomposite films which was superior to that of the other four nanomaterials.

Keywords

Starch Poly(vinyl alcohol) Nanocomposite Film blowing Properties

References

  1. 1.
    Marcin M, Agnieszka W, Leszek, Moscicki (2009) In: Leon PBM, Janssen L Moscicki (eds) Biodegradable polymers and their practical utility. Wiley, New York
  2. 2.
    Wang SY, Ren JL, Li WY, Sun RC, Liu SJ (2014) Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr Polym 103:94–99CrossRef
  3. 3.
    Tang SW, Zou P, Xiong HG, Tang HL (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72:521–526CrossRef
  4. 4.
    Follain N, Joly C, Dole P, Bliard C (2005) Properties of starch based blends. Part 2. Influence of polyvinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydr Polym 60:185–192CrossRef
  5. 5.
    He YQ, Wang XR, Wu D, Gong QJ, Qiu HX, Liu Y, Wu T, Ma JK, Gao JP (2013) Biodegradable amylose films reinforced by graphene oxide and polyvinyl alcohol. Mater Chem Phys 142:1–11CrossRef
  6. 6.
    Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179CrossRef
  7. 7.
    Tang XZ, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16CrossRef
  8. 8.
    Yang SY, Liu CI, Wu JY, Kuo JC, Huang CY (2008) Improving the processing ability and mechanical strength of starch/poly(vinyl alcohol) blends through plasma and acid modification. Macromol Symp 272:150–155CrossRef
  9. 9.
    Yoon S, Chough S, Park H (2007) Preparation of resistant starch/poly(vinyl alcohol) blend films with added plasticizer and crosslinking agents. J Appl Polym Sci 106:2485–2493CrossRef
  10. 10.
    Zhou XY, Cu YF, Jia DM, Xie D (2009) Effect of a complex plasticizer on the structure and properties of the thermoplastic PVA/starch blends. Polym Plast Technol Eng 48:489–495CrossRef
  11. 11.
    Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRef
  12. 12.
    Chivrac F, Pollett E, Schmutz M (2008) New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromolecules 9:896–900CrossRef
  13. 13.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites-a review. Mater Sci Eng A 393:1–11CrossRef
  14. 14.
    Xie FW, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628CrossRef
  15. 15.
    Majdzadeh AK, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70:1557–1563CrossRef
  16. 16.
    Sreekumar PA, Al-Harthi MA, De SK (2012) Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater 46:3181–3187CrossRef
  17. 17.
    Yang Y, Liu C, Chang PR, Chen Y, Anderson DP, Stumborg M (2010) Properties and structural characterization of oxidized starch/PVA/α-zirconium phosphate composites. J Appl Polym Sci 115:1089–1097CrossRef
  18. 18.
    Chaichana E, Jongsomjit B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905CrossRef
  19. 19.
    Xiong HG, Tang SW, Tang HL, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268CrossRef
  20. 20.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRef
  21. 21.
    Gao W, Dong HZ, Hou HX, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr Polym 88:321–328CrossRef
  22. 22.
    Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohydr Polym 71:583–590CrossRef
  23. 23.
    Lafargue D, Pontoire B, Buléon A, Doublier JL, Lourdin D (2007) Structure and mechanical properties of hydroxypropylated starch films. Biomacromolecules 8:3950–3958CrossRef
  24. 24.
    Yan QQ, Hou HX, Guo P, Dong HZ (2011) Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87:707–712CrossRef
  25. 25.
    Sudhamani SR, Prasad MS, Udaya Sankar K (2003) DSC and FTIR studies on Gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocolloid 17:245–250CrossRef
  26. 26.
    Cyras VP, Manfredi LB, Ton-That MT, Vazquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63CrossRef
  27. 27.
    Chen N, Wan C, Zhang Y, Zhang Y (2004) Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend. Polym Test 23:169–174CrossRef
  28. 28.
    Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69:241–246CrossRef
  29. 29.
    Tang H, Xiong H, Tang S, Zou P (2009) A starch-based biodegradable film modified by nano silicon dioxide. J Appl Polym Sci 113:34–40CrossRef
  30. 30.
    Gao Y, Liu L, Zhang Z (2009) Mechanical performance of nano-CaCO3 filled polystyrene composites. Acta Mech Solida Sin 22:555–562CrossRef
  31. 31.
    Lee JH, Jung D, Hong CE, Rhee KY, Advani SG (2005) Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Compos Sci Technol 65:1996–2002CrossRef
  32. 32.
    Ghaneh-Fard A (1999) Effects of film blowing conditions on molecular orientation and mechanical properties of polyethylene films. J Plast Film Sheet 15:194–218CrossRef
  33. 33.
    Deborah LC, Julien B, Alain D (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153CrossRef
  34. 34.
    Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106:1431–1437CrossRef
  35. 35.
    Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67:1–17CrossRef
  36. 36.
    Chang PR, Jian R, Yu J, Ma X (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425CrossRef
  37. 37.
    Liu H, Chaudhary D, Yusa SI, Tadé MO (2011) Glycerol/starch/Na+-montmorillonite nanocomposites: a XRD, FTIR, DSC and 1H NMR study. Carbohydr Polym 83:1591–1597CrossRef
  38. 38.
    García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294:169–177CrossRef
  39. 39.
    Ma X, Yu J, Wang N (2007) Production of thermoplastic starch/MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol Mater Eng 292:723–728CrossRef
  40. 40.
    Mu C, Guo J, Li X, Lin W, Li D (2012) Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloid 27:22–29CrossRef
  41. 41.
    Kisku SK, Sarkar N, Dash S, Swain SK (2014) Preparation of starch/PVA/CaCO3 nanobiocomposite films: study of fire retardant, thermal resistant, gas barrier and biodegradable properties. Polym Plast Technol 53:1664–1670CrossRef
  42. 42.
    Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166CrossRef
  43. 43.
    Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47:245–252CrossRef
  44. 44.
    Zullo R, Iannace S (2009) The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: correlation among process, elongational properties and macromolecular structure. Carbohydr Polym 77:376–383CrossRef
  45. 45.
    Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554CrossRef


For further details log on website :

http://link.springer.com/article/10.1007%2Fs13726-015-0359-7

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...