Blog List

Thursday 11 August 2016

Micro-machinability of nanoparticle-reinforced Mg-based MMCs: an experimental investigation

Published Date
Open AccessORIGINAL ARTICLE
DOI: 10.1007/s00170-016-8611-7

Cite this article as: 
Teng, X., Huo, D., Wong, E. et al. Int J Adv Manuf Technol (2016). doi:10.1007/s00170-016-8611-7

Author

  • Xiangyu Teng
  • Eugene Wong
  • Ganesh Meenashisundaram

  • Manoj Gupta

  • Abstract

    As a composite material with combination of low weight and high engineering strength, metal matrix composites (MMCs) have been utilised in numerous applications such as aerospace, automobile, and bioengineering. However, MMCs are recognised as difficult-to-cut materials due to their improved strength and high hardness of the reinforcing particles. This paper presents an experimental investigation on micro-machinability of Mg-based MMCs reinforced with Ti and TiB2 nano-sized particles. The tool wear of AlTiN-coated micro-end mills was investigated. Both abrasive and chip adhesion effect were observed on the main cutting edges, whilst the reinforcement materials and volume fraction play an important role in determining the wear type and severity. The influence of cutting parameters on the surface morphology and cutting force was studied. According to analysis of variance (ANOVA), depth of cut and spindle speed have significant effect on the surface roughness. The specific cutting energy, surface morphology and the minimum chip thickness was obtained and characterised with the aim of examining the size effect. Furthermore, higher cutting force and worse machined surface quality were obtained at the small feed per tooth ranging from 0.15 to 0.5 μm/tooth indicating a strong size effect. Overall, Mg/TiB2MMCs exhibit better machinability.

    References

    1. 1. Beck AV (1943) The technology of magnesium and its alloys. F.A. Hughes & co. limited, London
    2. 2.
      Monaghan JM (1996) The use of a quick-stop test to study the chip formation of a SiC/Al metal matrix composite material and its matrix alloy. Int J Fatigue 3:213–217
    3. 3.
      Dieringa H (2010) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRef
    4. 4.
      Ferguson JB (2012) On the strength and strain to failure in particles-reinforced magnesium metal matrix nanocompostes (Mg MMNCs). Mater Sci Eng A 558:193–204CrossRef
    5. 5.
      Tjong SC (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652. doi:10.1002/adem.200700106CrossRef
    6. 6.
      Wang HY, Jiang QC, Li XL, Wang JG, Guan QF, Liang HQ (2003) In situ synthesis of TiC from nanopowders in a molten magnesium alloy. Mater Res Bull 38:1387–1392CrossRef
    7. 7.
      Li WJ, Tu R, Goto T (2006) Preparation of directionally solidified TiB2–TiC eutectic composites by a floating zone method. Mater Lett 60:839–843CrossRef
    8. 8.
      Wen G, Li SB, Zhang BS, Guo ZX (2001) Reaction synthesis of TiB2–TiC composites with enhanced toughness. Acta Mater 49:1463–1470CrossRef
    9. 9.
      Dean S, Zhang X, Wang H, Liao L, Ma N (2006) New synthesis method and mechanical properties of magnesium matrix composites. J ASTM Int 3:13036CrossRef
    10. 10.
      Pérez P, Garcés G, Adeva P (2004) Mechanical properties of a Mg–10 (vol.%)Ti composite. Compos Sci Technol 64:145–151CrossRef
    11. 11.
      Kumar SS, Uthayakumar M, Kumaran ST, Parameswaran P (2014) Electrical discharge machining of Al(6351)–SiC–B 4 C hybrid composite. Mater Manuf Process 29:1395–1400. doi:10.1080/10426914.2014.952024CrossRef
    12. 12.
      Müller F, Monaghan J (2000) Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf 40:1351–1366CrossRef
    13. 13.
      Kannan S, Kishawy HA, Deiab I (2009) Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. J Mater Process Technol 209:2260–2269. doi:10.1016/j.jmatprotec.2008.05.025CrossRef
    14. 14.
      Du J, Zhou L, Li J, Yao Y (2014) Analysis of chip formation mechanism in mill-grinding of SiCp/Al composites. Mater Manuf Process 29:1353–1360. doi:10.1080/10426914.2014.912309CrossRef
    15. 15.
      Aurich JC, Zimmermann M, Schindler S, Steinmann P Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-7444-0
    16. 16.
      Weinert K, Lange M (2001) Machining of magnesium matrix composites. Adv Eng Mater 3:975–979. doi:10.1002/1527-2648(200112)3:12<975::AID-ADEM975>3.0.CO;2-LCrossRef
    17. 17.
      Takács M, Verö B, Mészáros I (2003) Micromilling of metallic materials. J Mater Process Technol 138:152–155CrossRef
    18. 18.
      Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257:1041–1046. doi:10.1016/j.wear.2004.07.005CrossRef
    19. 19.
      Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25:251–255. doi:10.1016/j.matdes.2003.09.019CrossRef
    20. 20.
      Huang ST, Zhou L, Chen J, Xu LF (2012) Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools. Mater Manuf Process 27:1090–1094. doi:10.1080/10426914.2011.654152CrossRef
    21. 21.
      Muguthu JN, Dong G, Ikua B (2013) Optimization of machining parameters influencing machinability of Al2124SiCp (45%wt) metal matrix composite. J Compos Mater 49:217–229. doi:10.1177/0021998313516141CrossRef
    22. 22.
      PalDey S, Deevi S (2003) Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater Sci Eng A 342:58–79. doi:10.1016/S0921-5093(02)00259-9CrossRef
    23. 23.
      Bouzakis KD, Michailidis N, Skordaris G et al (2012) Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann Manuf Technol 61:703–723. doi:10.1016/j.cirp.2012.05.006CrossRef
    24. 24.
      Cheng K, Huo D (2013) Micro-cutting: fundamental and application. John Wiley & Sons Ltd, ChichesterCrossRef
    25. 25.
      Liu J, Li J, Xu C (2013) Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements. J Micro Nano-Manuf 1:011010CrossRef
    26. 26.
      Wong W, Gupta M (2015) Using microwave energy to synthesize light weight/energy saving magnesium based materials: a review. Technologies 3:1–18CrossRef
    27. 27.
      Filiz S, Conley CM, Wasserman MB, Ozdoganlar OB (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47:1088–1100CrossRef
    28. 28.
      Ucun I, Aslantas K, Bedir F (2013) An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 300:8–19. doi:10.1016/j.wear.2013.01.103CrossRef
    29. 29.
      Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Process Technol 100:194–199. doi:10.1016/S0924-0136(99)00405-7CrossRef
    30. 30.
      Kumar A, Mahapatra MM, Jha PK (2014) Effect of machining parameters on cutting force and surface roughness of in situ Al-4.5%Cu/TiC metal matrix composites. Meas J Int Meas Confed 48:325–332. doi:10.1016/j.measurement.2013.11.026CrossRef
    31. 31.
      Suresh Kumar Reddy N, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites. J Mater Process Technol 201:574–579. doi:10.1016/j.jmatprotec.2007.11.280CrossRef
    32. 32.
      Budak E, Altintaş Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118:216CrossRef
    33. 33.
      Liu X, Devor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng 126:666CrossRef
    34. 34.
      Kim CJ, Bono M, Ni J (2002) Experimental analysis of chip formation in micro-milling. Soc Manuf Eng 30:1–8
    35. 35.
      Vogler MP, Devor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-endmilling, part i: surface generation. J Manuf Sci Eng 126:685–694CrossRef
    36. 36.
      Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann Manuf Technol 50:61–64CrossRef
    37. 37.
      Liu J, Li J, Xu C (2014) Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: a review. CIRP J Manuf Sci Technol 7:55–70. doi:10.1016/j.cirpj.2014.01.003CrossRef


    For further details log on website :
    http://link.springer.com/article/10.1007%2Fs00170-016-8611-7


    No comments:

    Post a Comment

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...