Blog List

Friday, 19 August 2016

Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil

Published Date
Volume 30, Issue 4, pp 1315–1329

Title 
Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil

  • Author 
  • Silvia Rafaela Machado Lins
  • Luciana Della Coletta
  • Elizabethe de Campos Ravagnani
  • Juliana Gonçalez Gragnani
  • Edmar Antonio Mazzi

  • Original Article
    DOI: 10.1007/s00468-016-1368-7

    Cite this article as: 
    Lins, S.R.M., Coletta, L.D., de Campos Ravagnani, E. et al. Trees (2016) 30: 1315. doi:10.1007/s00468-016-1368-7

    Abstract

    Key message

    There was no consistent change in the δ13C values of leaves, trunks, litter, or soil with altitude in the Atlantic Forest of Brazil.

    Abstract

    Several studies have found a direct relationship between the stable carbon isotopic composition (δ13C) of plants and soils, and altitude, generally thought to be caused by greater carboxylation coupled with morphological changes in leaves at higher altitude. However, most of these studies were conducted in temperate areas of the globe with only a few in tropical areas. To fill this information gap, our main objective was to investigate the stable carbon isotopic composition of leaves, trunks, litter samples, and soil across an elevational range in the coastal Atlantic Forest of the Southeast region of Brazil. Our main hypothesis based on previous work is that the δ13C values in plants and soil, and soil turnover times will increase with elevation. Samples were taken from Restinga (0–50 m), Lowland (100–150 m), Submontane (300–500 m), and Montane (1000–1100 m) forests. The overall foliar δ13C was −32.2 ± 1.7 ‰, increasing by almost 4 ‰ in trunks (−28.4 ± 1.5 ‰), almost 2 ‰ in litter (−30.3 ± 1.0 ‰), and 4.5 ‰ in soil organic matter (−27.7 ± 0.9 ‰). There was no clear trend towards higher δ13C values at higher elevation, neither for vegetation components nor soils. There was also no clear trend for soil carbon turnover times (β), estimated by the regression between the logarithm carbon concentration and δ13C values. The only significant differences observed across the elevational range in vegetation tissues were lower foliar δ13C and higher soil δ13C in the Lowland forest stand, and higher trunk δ13C in the Submontane forest stand compared with other forest types.

    References

    1. Agren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126. doi:10.2136/sssaj1996.03615995006000040023xCrossRef
    2. Alves LF, Vieira SA, Scaranello MA et al (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecol Manag 260:679–691. doi:10.1016/j.foreco.2010.05.023CrossRef
    3. Assad ED, Pinto HS, Martins SC et al (2013) Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey. Biogeosciences 10:6141–6160. doi:10.5194/bg-10-6141-2013CrossRef
    4. Badeck F-W, Tcherkez G, Nogués S et al (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs–a widespread phenomenon. Rapid Commun Mass Sp 19:1381–1391. doi:10.1002/rcm.1912CrossRef
    5. Bird MI, Haberle SG, Chivas AR (1994) Effect of altitude on carbon-isotope composition of forest and grasslands soils of Papua New Guinea. Global Biogeochem Cy 8:13–22. doi:10.1029/93GB03487CrossRef
    6. Bonal D, Sabatier D, Montpied P et al (2000) Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124:454–468. doi:10.1007/PL00008871CrossRef
    7. Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98. doi:10.1007/s00442-007-0700-8CrossRefPubMed
    8. Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitation effects on δ13C depth profiles in SOM under temperate beech forests. Geoderma 235–236:146–153. doi:10.1016/j.geoderma.2014.07.007CrossRef
    9. Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131. doi:10.1007/s004420050140CrossRef
    10. Cernusak L, Tacherkez G, Keitel C et al (2009) Viewpoint: why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36:199–213. doi:10.1071/FP08216CrossRef
    11. Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857. doi:10.1073/pnas.0935903100CrossRefPubMedPubMedCentral
    12. Coletta LD (2015) Leaf decomposition in Dense Ombrophilous forest in different altitudes and climate conditions. Dissertation, University of São Paulo
    13. Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33:41–51. doi:10.1016/S0038-0717(00)00113-9CrossRef
    14. Cordell S, Goldstein G, Meinzer FC, Handley LL (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carbonxylation capasity and δ13C along an altitudinal gradient. Funct Ecol 13:811–818. doi:10.1046/j.1365-2435.1999.00381.xCrossRef
    15. Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335. doi:10.1071/BT02124CrossRef
    16. Diefendorf AF, Mueller KE, Wing SL et al (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA 107:5738–5743. doi:10.1073/pnas.0910513107CrossRefPubMedPubMedCentral
    17. Domingues TF, Berry JA, Martinelli LA et al (2005) Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil). Earth Interact 9:1. doi:10.1175/EI149.1CrossRef
    18. Ehleringer JR, Cerling TE, Dearing MD (2002) Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integr Comp Biol 42:424–430. doi:10.1093/icb/42.3.424CrossRefPubMed
    19. Farquhar GD, Leary MHO, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137. doi:10.1071/PP9820121CrossRef
    20. Farquhar GD, Ehleringer JR, Rubick K (1989) Discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurevCrossRef
    21. Foley JA, Defries R, Asner GP et al (2005) Global consequences of land use. Science (New York, NY) 309:570–574. doi:10.1126/science.1111772CrossRef
    22. Freycon V, Krencker M, Schwartz D et al (2010) The impact of climate changes during the Holocene on vegetation in northern French Guiana. Quat Res 73:220–225. doi:10.1016/j.yqres.2009.11.007CrossRef
    23. Fyllas NM, Patino S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708. doi:10.5194/bg-6-2677-2009CrossRef
    24. Garten CT, Cooper LW, Post WM III, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains. Ecology 81:1108–1119. doi:10.1890/0012-9658(2000)081[1108:CCOFSC]2.0.CO;2
    25. Guehl JM, Domenach AM, Bereau M et al (1998) Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approach (δ15N and δ13C). Oecologia 116:316–330. doi:10.1007/s004420050593CrossRef
    26. Holtum JAM, Winter K (2005) Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. Trees 19:545–551. doi:10.1007/s00468-005-0413-8CrossRef
    27. Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40. doi:10.1007/s004420050986CrossRef
    28. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    29. Joly C, Assis M, Barnacci L et al (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:123–145
    30. Kaplan JO, Prentice IC, Buchmann N (2002) The stable carbon isotope composition of the terrestrial biosphere: modeling at scales from the leaf to the globe. Glob Biogeochem Cycles. doi:10.1029/2001GB001403
    31. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006CrossRefPubMed
    32. Korner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high-altitude. Oecologia 74:623–632. doi:10.1007/BF00380063CrossRef
    33. Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40. doi:10.1007/BF00328400CrossRef
    34. Lajtha K, Getz J (1993) Photosynthesis and water-use eficiency in pinyon-juniper communities along an elevation gradient in northern New Mexico. Oecologia. doi:10.1007/BF00317308
    35. Martinelli LA, Pessenda LCR, Espinoz E et al (1996) Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia 106:376–381. doi:10.1007/BF00334565CrossRef
    36. Martinelli L, Almeida S, Brown I et al (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia 114:170–179. doi:10.1007/s004420050433CrossRef
    37. Martins SC, Sousa Neto E, Piccolo MDC et al (2015) Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Reg 5:106–116. doi:10.1016/j.geodrs.2015.04.005CrossRef
    38. Morecroft MD, Woodward FI (1996) Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and delta C-13 of Alchemilla alpina. New Phytol 134:471–479. doi:10.1111/j.1469-8137.1996.tb04364.xCrossRef
    39. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501CrossRefPubMed
    40. Ometto JPHB (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Glob Biogeochem Cycles 16:1–10. doi:10.1029/2001GB001462CrossRef
    41. Ometto JPHB, Ehleringer JR, Domingues TF et al (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274. doi:10.1007/s10533-006-9008-8CrossRef
    42. Osono T, Hobara S, Koba K et al (2006) Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biol Biochem 38:517–525. doi:10.1016/j.soilbio.2005.05.022CrossRef
    43. Osono T, Takeda H, Azuma JI (2008) Carbon isotope dynamics during leaf litter decomposition with reference to lignin fractions. Ecol Res 23:51–55. doi:10.1007/s11284-007-0336-5CrossRef
    44. Pessenda LC, de Oliveira PE, Mofatto M et al (2009) The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat Res 71:437–452. doi:10.1016/j.yqres.2009.01.008CrossRef
    45. Powers JS, Schlesinger WH (2002) Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica. Geoderma 109:141–160. doi:10.1016/s0016-7061(02)00148-9CrossRef
    46. Russell AE, Raich JW (2012) Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. doi: 10.1073/pnas.1204157109/-/DCSupplemental.http://www.pnas.org/cgi/doi/10.1073/pnas.1204157109
    47. Saatchi SS, Harris NL, Brown S et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A 108:9899–9904. doi:10.1073/pnas.1019576108CrossRefPubMedPubMedCentral
    48. Sanaiotti TM, Martinelli LA, Victoria RL et al (2002) Past vegetation changes in Amazon Savannas determined using carbon isotopes of soil organic matter1. Biotropica 34:2. doi:10.1646/0006-3606(2002)034[0002:PVCIAS]2.0.CO;2
    49. Šantrůčková H, Bird M, Frouz J (2000) Natural abundance of 13C in leaf litter as related to feeding activity of soil invertebrates and microbial mineralisation. Soil Biol Biochem 32:1793–1797. doi:10.1016/S0038-0717(00)00066-3CrossRef
    50. Scaranello MADS, Alves LF, Vieira SA et al (2012) Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Sci Agric 69:26–37. doi:10.1590/S0103-90162012000100005CrossRef
    51. Sollins P, Kramer MG, Swanston C et al (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:209–231. doi:10.1007/s10533-009-9359-zCrossRef
    52. Sousa Neto E, Carmo JB, Keller M et al (2011) Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 8:733–742. doi:10.5194/bg-8-733-2011CrossRef
    53. Sparks JP, Ehleringer JR (1997) Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oecologia 109:362–367. doi:10.1007/s004420050094CrossRef
    54. Statsoft (2014) Statistica. Tulsa: StatSoft. Avaiable in: <http://www.statsoft.com>
    55. Telles ECC, Camargo PB, Martinelli LA et al (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Glob Biogeochem Cycles. doi:10.1029/2002GB001953
    56. Trumbore E, Davidson A, Camargo D, Nepstad C, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob Biogeochem Cycles 9:515–528. doi:10.1029/95GB02148CrossRef
    57. Van de Water PK, Leavitt SW, Betancourt JL (2002) Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia 132:332–343. doi:10.1007/s00442-002-0973-xCrossRef
    58. Vieira SA, Alves LF, Duarte-Neto PJ et al (2011) Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol Evol 1:421–434. doi:10.1002/ece3.41CrossRefPubMedPubMedCentral
    59. Vitousek PM, Field CB, Matson PA (1990) Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84:362–370. doi:10.1007/BF00329760CrossRef
    60. Wang G, Jia Y, Li W (2015) Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter. Sci Rep 5:11043. doi:10.1038/srep11043CrossRefPubMedPubMedCentral
    61. Wittich B, Horna V, Homeier J, Leuschner C (2012) Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a Pantropical literature analysis. Ecosystems 15:958–973. doi:10.1007/s10021-012-9556-9CrossRef
    62. Xu S, Liu Y, Cui Y, Pei Z (2011) Litter decomposition in a subtropical plantation in Qianyanzhou, China. J For Res 16:8–15. doi:10.1007/s10310-010-0206-9CrossRef

    For further details log on website :
    http://link.springer.com/article/10.1007/s00468-016-1368-7

    No comments:

    Post a Comment

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...