Published Date
Article
Cite this article as:
Emam, H.E., El-Rafie, M.H., Ahmed, H.B. et al. Fibers Polym (2015) 16: 1676. doi:10.1007/s12221-015-5197-x
- First Online:
- 29 August 2015
DOI: 10.1007/s12221-015-5197-x
Author
Abstract
Effective one-pot and large scale strategy for rapid synthesis and stabilization of Ag0nanoparticles (AgNPs) at room temperature, using acacia gum has been reported. Acacia gum played a dual rule as reducing agent for Ag+ and as stabilizing agent for the net produced AgNPs. Concentration of reducing sugars produced in the reaction medium was monitored. Formation of AgNPs has been detected by UV-Vis spectra and confirmed by transmission electron microscopy. Size distribution was 4–8 nm and mean size was 6 nm for AgNPs prepared at room temperature. Finishing of Cotton fabrics by solutions of AgNPs - acacia composite was utilized. Presence of Ag on the coated Cotton was confirmed by using energy dispersive X-ray spectroscopy. The influence of coating with that composite on color of fabrics and on biocidal properties as well as laundering durability of obtained effects was studied. Coated Cotton fabrics exhibited excellent antibacterial action with good durability as after 20 washing cycles, 99 % of bacteria was completely killed. The presented method contains neither complicated systems nor hazard chemicals, which makes the coated fabrics with AgNPs - acacia composite sterile and can be used in medical purposes to prevent or minimize infection with pathogenic bacteria.
References
- 2000).CrossRefGoogle Scholar
- 2.A. Debarre, R. Jaffiol, C. Julien, P. Tchenio, and M. Mostafavi, Chem. Phys. Lett., 386, 244 (2004).CrossRefGoogle Scholar
- 3.K. Faulds, W. E. Smith, and D. Graham, Anal. Chem., 76, 412 (2004).CrossRefGoogle Scholar
- 4.K. Kneipp, G. Hinzmann, and D. Fassler, Chem. Phys. Lett., 99, 503 (1983).CrossRefGoogle Scholar
- 5.W. P. Wuelfing, F. P. Zamborini, A. C. Templeton, X. G. Ween, H. Yoon, and R. W. Murray, Chem. Mater., 13, 87 (2001).CrossRefGoogle Scholar
- 6.E. Bakker, Anal. Chem., 76, 3285 (2004).CrossRefGoogle Scholar
- 7.F. Frederix, J. M. Friedt, K. H. Choi, W. Laureyn, A. Campetelli, D. Mondelears, G. Maes, and G. Borghs, Anal. Chem., 75, 6894 (2003).CrossRefGoogle Scholar
- 8.A. J. Haes, S. Zou, G. C. Scatz, and R. P. Van Duyne, J. Phy. Chem. B, 108, 6961 (2004).CrossRefGoogle Scholar
- 9.A. M. Abdel-Mohsen, A. S. Aly, and R. Hrdina, J. Polym. Environ., 20, 459 (2012).CrossRefGoogle Scholar
- 10.M. H. El-Rafie, H. B. Ahmed, and M. K. Zahran, Carbohydr. Polym., 107, 174 (2014).CrossRefGoogle Scholar
- 11.H. E. Emam, A. P. Manian, B. Široká, H. Duelli, B. Redl, A. Pipal, and T. Bechtold, J. Clean. Prod., 39, 17 (2013).CrossRefGoogle Scholar
- 12.H. E. Emam, S. Mowafi, H. M. Mashaly, and M. Rehan, Carbohydr. Polym., 110, 148 (2014).CrossRefGoogle Scholar
- 13.I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 275, 177 (2004).CrossRefGoogle Scholar
- 14.M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym., 108, 145 (2014).CrossRefGoogle Scholar
- 15.D. G. Yu, Colloid Surf. B-Biointerfaces, 59, 171 (2007).CrossRefGoogle Scholar
- 16.Y. C. Liu and L. H. Lin, Electrochem. Commun., 6, 1163 (2004).CrossRefGoogle Scholar
- 17.A. Henglein, Chem. Mater., 10, 444 (1989).CrossRefGoogle Scholar
- 18.M. M. Cai, J. L. Chen, and J. Zhou, Appl. Surf. Sci., 226, 422 (2004).CrossRefGoogle Scholar
- 19.A. Taleb, C. Petti, and M. P. Pileni, Chem. Mater., 9, 950 (1997).CrossRefGoogle Scholar
- 20.A. Henglein, J. Phys. Chem., 83, 2209 (1979).CrossRefGoogle Scholar
- 21.D. Meisel, J. Am. Chem. Soc., 101, 6133 (1979).CrossRefGoogle Scholar
- 22.M. Mostafavi, J. L. Marignier, J. Amblard, and J. Belloni, Rad. Phys. Chem., 34, 605 (1989).Google Scholar
- 23.M. Mostafavi, G. R. Dey, L. Francois, and J. Belloni, J. Phys. Chem. A, 106, 10184 (2002).CrossRefGoogle Scholar
- 24.H. Remita, I. Lampre, M. Mostafavi, E. Balanzat, and S. Bouffard, Rad. Phys. Chem., 72, 575 (2005).CrossRefGoogle Scholar
- 25.M. K. Temgire and S. S. Joshi, Rad. Phys. Chem., 71, 1039 (2004).CrossRefGoogle Scholar
- 26.D. M. Cheng, X. D. Zhou, H. B. Xia, and H. S. O. Chan, Chem. Mater., 17, 3578 (2005).CrossRefGoogle Scholar
- 27.M. Tsuji, Y. Nishizawa, K. Matsumoto, N. Miyamae, T. Tsuji, and X. Zhang, Colloid Surf. A-Physicochem. Eng. Asp., 293, 185 (2007).CrossRefGoogle Scholar
- 28.Z. Lei and Y. Fan, Mater. Lett., 60, 2256 (2006).CrossRefGoogle Scholar
- 29.Y. N. Rao, D. Banerjee, A. Datta, S. K. Das, R. Guin, and A. Saha, Radiat. Phys. Chem., 79, 1240 (2010).CrossRefGoogle Scholar
- 30.R. A. Gross and B. Kalra, Science, 297, 803 (2002).CrossRefGoogle Scholar
- 31.A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, Carbohydr. Polym., 82, 933 (2010).CrossRefGoogle Scholar
- 32.M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym., 111, 10 (2014).CrossRefGoogle Scholar
- 33.M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym., 111, 971 (2014).CrossRefGoogle Scholar
- 34.H. E. Emam and M. K. El-Bisi, Cellulose, 21, 4219 (2014).CrossRefGoogle Scholar
- 35.P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003).CrossRefGoogle Scholar
- 36.Y. Liu, S. Chen, L. Zhong, and G. Wu, Rad. Phys. Chem., 78, 251 (2009).CrossRefGoogle Scholar
- 37.H. Huang, Q. Yuan, and X. Yang, Colloid Surf. BBiointerfaces, 39, 31 (2004).CrossRefGoogle Scholar
- 38.P. Chen, L. Song, Y. Liu, and Y. Fang, Rad. Phys. Chem., 76, 1165 (2007).CrossRefGoogle Scholar
- 39.R. Yoksan and S. Chirachanchai, Mater. Chem. Phys., 115, 296 (2009).CrossRefGoogle Scholar
- 40.H. E. Emam, N. H. Saleh, K. S. Nagy, and M. K. Zahran, Int. J. Biol. Macromol., 78, 249 (2015).CrossRefGoogle Scholar
- 41.J. Chen, J. Wang, X. Zhang, and Y. Jin, Mater. Chem. Phys., 108, 421 (2008).CrossRefGoogle Scholar
- 42.N. H. H. Abu Bakar, J. Ismail, and M. Abu Bakar, Mater. Chem. Phys., 104, 276 (2007).CrossRefGoogle Scholar
- 43.A. J. Kora, S. R. Beedu, and A. Jayarama, Organic and Medicinal Chemistry Letters, 2, 17 (2012).CrossRefGoogle Scholar
- 44.A. J. Kora and R. B. Sashidhar, J. Antibiot., 68, 88 (2015).CrossRefGoogle Scholar
- 45.R. Lori, A. J. Kora, and R. B. Sashidhar, Appl. Nanosci., 5, 535 (2015).CrossRefGoogle Scholar
- 46.D. Renard, L. Lavenant-Gourgeon, M. C. Ralet, and C. Sanchez, Biomacromolecules, 7, 2637 (2006).CrossRefGoogle Scholar
- 47.W. Johnson, Int. J. Toxicol., 24, 75 (2005).CrossRefGoogle Scholar
- 48.Y. M. Mohan, R. K. Mohana, K. Sambasivudu, S. Singh, and B. Sreedhar, J. Appl. Polym. Sci., 106, 1153 (2007).CrossRefGoogle Scholar
- 49.K. P. Velikov, G. E. Zegers, and V. B. Alfons, Langmuir, 19, 1384 (2003).CrossRefGoogle Scholar
- 50.R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, Nano Lett., 2, 25 (2002).CrossRefGoogle Scholar
- 51.J. B. Sumner, J. Biol. Chem., 47, 5 (1921).Google Scholar
- 52.H. E. Emam and M. K. Zahran, Int. J. Biol. Macromol., 75, 106 (2015).CrossRefGoogle Scholar
- 53.AATCC Evaluation Procedure 6-2003, “Instrumental Color Measurement”, Vol. 83, pp.384-389, AATCC Technical Manual, 2008.
- 54.AATCC Test Method 100-2004, “Antibacterial Finishes on Textile Materials: Assessment of”, Vol. 83, p.145, AATCC Technical Manual, 2008.
- 55.G. L. Miller, Anal. Chem., 31, 426 (1959).CrossRefGoogle Scholar
- 56.J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, and M. O. Delcourt, New J. Chem., 1239 (1998).Google Scholar
- 57.J. Cai, S. Kimura, M. Wada, and S. Kuga, Biomacromolecules, 10, 87 (2008).CrossRefGoogle Scholar
- 58.S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Biomacromolecules, 10, 2714 (2009).CrossRefGoogle Scholar
- 59.J. Y. Kim and F. L. Tallahassee, U. S. Patent, 0316693 A1 (2010).Google Scholar
- 60.P. K. Khanna and V. S. Subbarao, Mater. Lett., 57, 2242 (2003).CrossRefGoogle Scholar
- 61.N. E. Kotelnikova, V. N. Demidov, G. Wegener, E. Windeisen, and V. P. Kotelnikov, Cell. Chem. Technol., 37, 225 (2003).Google Scholar
- 62.M. Harada and E. Katagiri, Langmuir, 26, 17896 (2010).CrossRefGoogle Scholar
- 63.T. Rabilloud, L. Vuillard, C. Gilly, and J. J. Lawrence, Cell. Mol. Biol., 40, 57 (1994).Google Scholar
- 64.E. Janata, J. Phys. Chem. B, 107, 7334 (2003).CrossRefGoogle Scholar
- 65.P. Mulvancy and A. Henglein, J. Phys. Chem., 94, 4182 (1990).CrossRefGoogle Scholar
- 66.M. Mostafavi, N. Keghouchen, and M. O. Delcourt, Chem. Phys. Lett., 169, 81 (1990).CrossRefGoogle Scholar
- 67.M. Mostafavi, M. O. Delcourt, N. Keghouche, and G. Picq, Radiat. Phys. Chem., 40, 445 (1992).Google Scholar
- 68.M. Mostafavi, M. O. Delcourt, and G. Picq, Radiat. Phys. Chem., 41, 453 (1993).CrossRefGoogle Scholar
- 69.V. I. Nadezhda, N. T. Natalya, A. E. Lydmila, and A. B. Vasilyi, Int. J. Carbohydr. Chem., ID 459410, p.9 (2012).Google Scholar
- 70.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).CrossRefGoogle Scholar
- 71.S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006).CrossRefGoogle Scholar
- 72.Q. Li and Y. Cao, “Preparation and Characterization of Gold Nanorods, Nanorods” (O. Yalcin Ed.), ISBN 978-953-51-0209-0, InTech, DOI: 10.5772/35880, 2012.
- 73.M. Radetic, V. Ilic, V. Vodnik, S. Dimitrijevic, P. Jovancic, and Z. Šaponjic, Polym. Adv. Technol., 19, 1816 (2008).CrossRefGoogle Scholar
- 74.T. Yuranova, A. G. Rincon, A. Bozzi, S. Parra, C. Pulgarin, and P. Albers, J. Photochem. Photobiol. A-Chem., 161, 27 (2003).CrossRefGoogle Scholar
- 75.E. Falletta, M. Bonini, E. Fratini, L. A. Nostro, G. Pesavento, and A. Becheri, J. Phys. Chem. C, 112, 11758 (2008).CrossRefGoogle Scholar
For further details log on website :
http://link.springer.com/article/10.1007/s10853-006-0220-7
No comments:
Post a Comment