Blog List

Tuesday, 15 November 2016

Room temperature synthesis of metallic nanosilver using acacia to impart durable biocidal effect on cotton fabrics

Published Date 
Volume 16, Issue 8pp 1676–1687

Article
DOI: 10.1007/s12221-015-5197-x

Cite this article as: 
Emam, H.E., El-Rafie, M.H., Ahmed, H.B. et al. Fibers Polym (2015) 16: 1676. doi:10.1007/s12221-015-5197-x


Author 
  • Hossam E. Emam
  • M. H. El-Rafie
  • Hanan B. Ahmed
  • M. K. Zahran
Abstract 

Effective one-pot and large scale strategy for rapid synthesis and stabilization of Ag0nanoparticles (AgNPs) at room temperature, using acacia gum has been reported. Acacia gum played a dual rule as reducing agent for Ag+ and as stabilizing agent for the net produced AgNPs. Concentration of reducing sugars produced in the reaction medium was monitored. Formation of AgNPs has been detected by UV-Vis spectra and confirmed by transmission electron microscopy. Size distribution was 4–8 nm and mean size was 6 nm for AgNPs prepared at room temperature. Finishing of Cotton fabrics by solutions of AgNPs - acacia composite was utilized. Presence of Ag on the coated Cotton was confirmed by using energy dispersive X-ray spectroscopy. The influence of coating with that composite on color of fabrics and on biocidal properties as well as laundering durability of obtained effects was studied. Coated Cotton fabrics exhibited excellent antibacterial action with good durability as after 20 washing cycles, 99 % of bacteria was completely killed. The presented method contains neither complicated systems nor hazard chemicals, which makes the coated fabrics with AgNPs - acacia composite sterile and can be used in medical purposes to prevent or minimize infection with pathogenic bacteria.


References 

  1. 2.
    A. Debarre, R. Jaffiol, C. Julien, P. Tchenio, and M. Mostafavi, Chem. Phys. Lett.386, 244 (2004).CrossRefGoogle Scholar
  2. 3.
    K. Faulds, W. E. Smith, and D. Graham, Anal. Chem.76, 412 (2004).CrossRefGoogle Scholar
  3. 4.
    K. Kneipp, G. Hinzmann, and D. Fassler, Chem. Phys. Lett.99, 503 (1983).CrossRefGoogle Scholar
  4. 5.
    W. P. Wuelfing, F. P. Zamborini, A. C. Templeton, X. G. Ween, H. Yoon, and R. W. Murray, Chem. Mater.13, 87 (2001).CrossRefGoogle Scholar
  5. 6.
    E. Bakker, Anal. Chem.76, 3285 (2004).CrossRefGoogle Scholar
  6. 7.
    F. Frederix, J. M. Friedt, K. H. Choi, W. Laureyn, A. Campetelli, D. Mondelears, G. Maes, and G. Borghs, Anal. Chem.75, 6894 (2003).CrossRefGoogle Scholar
  7. 8.
    A. J. Haes, S. Zou, G. C. Scatz, and R. P. Van Duyne, J. Phy. Chem. B108, 6961 (2004).CrossRefGoogle Scholar
  8. 9.
    A. M. Abdel-Mohsen, A. S. Aly, and R. Hrdina, J. Polym. Environ.20, 459 (2012).CrossRefGoogle Scholar
  9. 10.
    M. H. El-Rafie, H. B. Ahmed, and M. K. Zahran, Carbohydr. Polym.107, 174 (2014).CrossRefGoogle Scholar
  10. 11.
    H. E. Emam, A. P. Manian, B. Široká, H. Duelli, B. Redl, A. Pipal, and T. Bechtold, J. Clean. Prod.39, 17 (2013).CrossRefGoogle Scholar
  11. 12.
    H. E. Emam, S. Mowafi, H. M. Mashaly, and M. Rehan, Carbohydr. Polym.110, 148 (2014).CrossRefGoogle Scholar
  12. 13.
    I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci.275, 177 (2004).CrossRefGoogle Scholar
  13. 14.
    M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym.108, 145 (2014).CrossRefGoogle Scholar
  14. 15.
    D. G. Yu, Colloid Surf. B-Biointerfaces59, 171 (2007).CrossRefGoogle Scholar
  15. 16.
    Y. C. Liu and L. H. Lin, Electrochem. Commun.6, 1163 (2004).CrossRefGoogle Scholar
  16. 17.
    A. Henglein, Chem. Mater.10, 444 (1989).CrossRefGoogle Scholar
  17. 18.
    M. M. Cai, J. L. Chen, and J. Zhou, Appl. Surf. Sci.226, 422 (2004).CrossRefGoogle Scholar
  18. 19.
    A. Taleb, C. Petti, and M. P. Pileni, Chem. Mater.9, 950 (1997).CrossRefGoogle Scholar
  19. 20.
    A. Henglein, J. Phys. Chem.83, 2209 (1979).CrossRefGoogle Scholar
  20. 21.
    D. Meisel, J. Am. Chem. Soc.101, 6133 (1979).CrossRefGoogle Scholar
  21. 22.
    M. Mostafavi, J. L. Marignier, J. Amblard, and J. Belloni, Rad. Phys. Chem.34, 605 (1989).Google Scholar
  22. 23.
    M. Mostafavi, G. R. Dey, L. Francois, and J. Belloni, J. Phys. Chem. A106, 10184 (2002).CrossRefGoogle Scholar
  23. 24.
    H. Remita, I. Lampre, M. Mostafavi, E. Balanzat, and S. Bouffard, Rad. Phys. Chem.72, 575 (2005).CrossRefGoogle Scholar
  24. 25.
    M. K. Temgire and S. S. Joshi, Rad. Phys. Chem.71, 1039 (2004).CrossRefGoogle Scholar
  25. 26.
    D. M. Cheng, X. D. Zhou, H. B. Xia, and H. S. O. Chan, Chem. Mater.17, 3578 (2005).CrossRefGoogle Scholar
  26. 27.
    M. Tsuji, Y. Nishizawa, K. Matsumoto, N. Miyamae, T. Tsuji, and X. Zhang, Colloid Surf. A-Physicochem. Eng. Asp.293, 185 (2007).CrossRefGoogle Scholar
  27. 28.
    Z. Lei and Y. Fan, Mater. Lett.60, 2256 (2006).CrossRefGoogle Scholar
  28. 29.
    Y. N. Rao, D. Banerjee, A. Datta, S. K. Das, R. Guin, and A. Saha, Radiat. Phys. Chem.79, 1240 (2010).CrossRefGoogle Scholar
  29. 30.
    R. A. Gross and B. Kalra, Science297, 803 (2002).CrossRefGoogle Scholar
  30. 31.
    A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, Carbohydr. Polym.82, 933 (2010).CrossRefGoogle Scholar
  31. 32.
    M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym.111, 10 (2014).CrossRefGoogle Scholar
  32. 33.
    M. K. Zahran, H. B. Ahmed, and M. H. El-Rafie, Carbohydr. Polym.111, 971 (2014).CrossRefGoogle Scholar
  33. 34.
    H. E. Emam and M. K. El-Bisi, Cellulose21, 4219 (2014).CrossRefGoogle Scholar
  34. 35.
    P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc.125, 13940 (2003).CrossRefGoogle Scholar
  35. 36.
    Y. Liu, S. Chen, L. Zhong, and G. Wu, Rad. Phys. Chem.78, 251 (2009).CrossRefGoogle Scholar
  36. 37.
    H. Huang, Q. Yuan, and X. Yang, Colloid Surf. BBiointerfaces39, 31 (2004).CrossRefGoogle Scholar
  37. 38.
    P. Chen, L. Song, Y. Liu, and Y. Fang, Rad. Phys. Chem.76, 1165 (2007).CrossRefGoogle Scholar
  38. 39.
    R. Yoksan and S. Chirachanchai, Mater. Chem. Phys.115, 296 (2009).CrossRefGoogle Scholar
  39. 40.
    H. E. Emam, N. H. Saleh, K. S. Nagy, and M. K. Zahran, Int. J. Biol. Macromol.78, 249 (2015).CrossRefGoogle Scholar
  40. 41.
    J. Chen, J. Wang, X. Zhang, and Y. Jin, Mater. Chem. Phys.108, 421 (2008).CrossRefGoogle Scholar
  41. 42.
    N. H. H. Abu Bakar, J. Ismail, and M. Abu Bakar, Mater. Chem. Phys.104, 276 (2007).CrossRefGoogle Scholar
  42. 43.
    A. J. Kora, S. R. Beedu, and A. Jayarama, Organic and Medicinal Chemistry Letters2, 17 (2012).CrossRefGoogle Scholar
  43. 44.
    A. J. Kora and R. B. Sashidhar, J. Antibiot.68, 88 (2015).CrossRefGoogle Scholar
  44. 45.
    R. Lori, A. J. Kora, and R. B. Sashidhar, Appl. Nanosci.5, 535 (2015).CrossRefGoogle Scholar
  45. 46.
    D. Renard, L. Lavenant-Gourgeon, M. C. Ralet, and C. Sanchez, Biomacromolecules7, 2637 (2006).CrossRefGoogle Scholar
  46. 47.
    W. Johnson, Int. J. Toxicol.24, 75 (2005).CrossRefGoogle Scholar
  47. 48.
    Y. M. Mohan, R. K. Mohana, K. Sambasivudu, S. Singh, and B. Sreedhar, J. Appl. Polym. Sci.106, 1153 (2007).CrossRefGoogle Scholar
  48. 49.
    K. P. Velikov, G. E. Zegers, and V. B. Alfons, Langmuir19, 1384 (2003).CrossRefGoogle Scholar
  49. 50.
    R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, Nano Lett.2, 25 (2002).CrossRefGoogle Scholar
  50. 51.
    J. B. Sumner, J. Biol. Chem.47, 5 (1921).Google Scholar
  51. 52.
    H. E. Emam and M. K. Zahran, Int. J. Biol. Macromol.75, 106 (2015).CrossRefGoogle Scholar
  52. 53.
    AATCC Evaluation Procedure 6-2003, “Instrumental Color Measurement”, Vol. 83, pp.384-389, AATCC Technical Manual, 2008.
  53. 54.
    AATCC Test Method 100-2004, “Antibacterial Finishes on Textile Materials: Assessment of”, Vol. 83, p.145, AATCC Technical Manual, 2008.
  54. 55.
    G. L. Miller, Anal. Chem.31, 426 (1959).CrossRefGoogle Scholar
  55. 56.
    J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, and M. O. Delcourt, New J. Chem., 1239 (1998).Google Scholar
  56. 57.
    J. Cai, S. Kimura, M. Wada, and S. Kuga, Biomacromolecules10, 87 (2008).CrossRefGoogle Scholar
  57. 58.
    S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Biomacromolecules10, 2714 (2009).CrossRefGoogle Scholar
  58. 59.
    J. Y. Kim and F. L. Tallahassee, U. S. Patent, 0316693 A1 (2010).Google Scholar
  59. 60.
    P. K. Khanna and V. S. Subbarao, Mater. Lett.57, 2242 (2003).CrossRefGoogle Scholar
  60. 61.
    N. E. Kotelnikova, V. N. Demidov, G. Wegener, E. Windeisen, and V. P. Kotelnikov, Cell. Chem. Technol.37, 225 (2003).Google Scholar
  61. 62.
    M. Harada and E. Katagiri, Langmuir26, 17896 (2010).CrossRefGoogle Scholar
  62. 63.
    T. Rabilloud, L. Vuillard, C. Gilly, and J. J. Lawrence, Cell. Mol. Biol.40, 57 (1994).Google Scholar
  63. 64.
    E. Janata, J. Phys. Chem. B107, 7334 (2003).CrossRefGoogle Scholar
  64. 65.
    P. Mulvancy and A. Henglein, J. Phys. Chem.94, 4182 (1990).CrossRefGoogle Scholar
  65. 66.
    M. Mostafavi, N. Keghouchen, and M. O. Delcourt, Chem. Phys. Lett.169, 81 (1990).CrossRefGoogle Scholar
  66. 67.
    M. Mostafavi, M. O. Delcourt, N. Keghouche, and G. Picq, Radiat. Phys. Chem.40, 445 (1992).Google Scholar
  67. 68.
    M. Mostafavi, M. O. Delcourt, and G. Picq, Radiat. Phys. Chem.41, 453 (1993).CrossRefGoogle Scholar
  68. 69.
    V. I. Nadezhda, N. T. Natalya, A. E. Lydmila, and A. B. Vasilyi, Int. J. Carbohydr. Chem., ID 459410, p.9 (2012).Google Scholar
  69. 70.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B107, 668 (2003).CrossRefGoogle Scholar
  70. 71.
    S. Eustis and M. A. El-Sayed, Chem. Soc. Rev.35, 209 (2006).CrossRefGoogle Scholar
  71. 72.
    Q. Li and Y. Cao, “Preparation and Characterization of Gold Nanorods, Nanorods” (O. Yalcin Ed.), ISBN 978-953-51-0209-0, InTech, DOI: 10.5772/35880, 2012.
  72. 73.
    M. Radetic, V. Ilic, V. Vodnik, S. Dimitrijevic, P. Jovancic, and Z. Šaponjic, Polym. Adv. Technol.19, 1816 (2008).CrossRefGoogle Scholar
  73. 74.
    T. Yuranova, A. G. Rincon, A. Bozzi, S. Parra, C. Pulgarin, and P. Albers, J. Photochem. Photobiol. A-Chem.161, 27 (2003).CrossRefGoogle Scholar
  74. 75.
    E. Falletta, M. Bonini, E. Fratini, L. A. Nostro, G. Pesavento, and A. Becheri, J. Phys. Chem. C112, 11758 (2008).CrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s10853-006-0220-7

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...