Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Sunday, 4 December 2016

Follow-up of a panel restoration procedure through image correlation and finite element modeling

Published Date
doi:10.1016/j.ijsolstr.2010.12.010
Open Archive, Elsevier user license
  • Author 
  • D. Dureisseix b,,,
  • J. Colmars a
  • A. Baldit a
  • F. Morestin b
  • H. Maigre b
  • aLaboratoire de Mécanique et Génie Civil (LMGC), Montpellier 2 University/CNRS UMR 5508, CC 048, place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
  • bLaboratoire de Mécanique des Contacts et des Structures (LaMCoS), INSA Lyon/CNRS UMR 5259, 18-20 rue des Sciences, F-69621 Villeurbanne Cedex, France
Received 6 March 2010. Revised 26 November 2010. Available online 22 December 2010. 

Abstract

Residual stress estimation is an important question for structural integrity. Since residual stresses are self-balanced stress fields, a classical way to obtain information on them is to remove a part of the structure, and observe the structure displacement field arising from the stress redistribution. The hole-drilling method is such an approach. In some cases, as for the present one concerning a painted panel of cultural heritage, the hole-drilling method is not suited (a structure with a complex geometry, few tests allowed) but one can take advantage of structural modifications if they are monitored (here, a restoration act). We therefore describe in this article a model updating approach, focusing on the residual stress estimation and not on the material parameter identification.

This study couples an optical non-invasive shape measurement (digital image correlation, using a projected speckle pattern on the painted panel, with luminance compensation) and a numerical approach (3D finite elements) for the model updating. The 3D stereo-correlation is used to measure a partial displacement field between three different states of the structure (at three different times of the restoration act). The numerical part concerns stress evaluation, once the model and the experiments are compared using a geometric mapping and a spatial projection of discrete fields. Using modeling and identification, the simulation is used to obtain the residual stresses in the panel, before and after the restoration.

Keywords

  • Residual stresses
  • Wood panel
  • Painting
  • Conservation
  • Cultural heritage
  • Stereo. correlation
  • Identification
  • Inverse problem

  • 1 Introduction

    Conservation of paintings of cultural heritage on wood panels could gain from using tools of wood science and structural mechanics, to guide decision for curators and restorers. Indeed, the consequences of a restoration act on the future integrity of an artwork can be assessed with virtual (numerical) simulation once a predictive model has been designed. Such numerical simulations in the same context have recently been used for painted panels, for instance in Dureisseix et al., 2006, Chassagne et al., 2006 and Marcon, 2009, for musical instruments, Saft and Kaliske, 2009 and Leconte et al., 2009, for other wooden structures, Braovac et al., 2007 and Chassagne et al., 2007, for ancient buildings, Mele et al., 2003, Rafiee et al., 2008and Valluzzi et al., 2002, and even for natural parks (Cavagnero and Revelli, 2009).
    Since each artwork is a particular case, it requires an identification step to nurture the model. Objects of cultural heritage are often unique and precious artworks, and few mechanical tests can be conducted to identify the present state of the structure, that cannot be estimated with the evolution it was subjected to, due to the lack of past measurements. The present study mainly deals with a model design, based on finite elements, to couple simulations and experiments during a particular restoration act. The concerned artwork is ‘Baptême du Christ’, from an anonymous artist, stored in ‘Palais du Roure’, Avignon, France, Fig. 1(left).
    Fig. 1. Baptême du Christ, Palais du Roure, Avignon, France (left) and its cradle (right).
    An early restoration act, performed in the 70s but typical of the 19th and beginning of the 20th century, was a french parquetage (or cradle) on the rear side of the painted panel. This cradle consists of eight vertical beech beams, glued on the panel rear side (485 mm × 405 mm × 12 mm), and crossed with eight horizontal beech beams, Fig. 1(right). This kind of restoration aims to rigidify the wooden support to avoid excessive movements (mainly bending due to dissymmetry in moisture exchanges on both sides of the panel) that may endangers the pictural layer. The drawback of such a rigidification is the increase in internal stresses with humidity variations of the environment (see Rothe, 1998). Moreover this panel exhibits two cracks; they will not be taken into account herein.
    The new restoration act dates back to 2007 and has been followed in this study: the replacement of the horizontal beams of the cradle by new ones made in spruce. The initial horizontal beams were partly glued and partly clamped due to a permanent long-term deformation of the panel that installed itself after the initial restoration (mainly due to the mechanosorption effect). For the former beams to be replaced, they had to be cut, Fig. 2. This illustrates the presence of internal (or residual) stresses. The restoration has been monitored with image analysis: the shape of a part of the front painted side has been measured (i) before the removing of the former horizontal beams, (ii) after this removing and (iii) after mounting the new horizontal beams. These experimental data has to be used in conjunction with a structural analysis, in order to estimate the residual stresses in the panel, which is one of the goals of this study. Section 2 describes the experimental technique, while Section 3focuses on the finite element model and its comparison to the measurements. Finally, Section 4 uses these tools for the residual stresses estimation.
    Fig. 2. Former horizontal beams (left), cut to be extracted (central part missing, used for material identification) and replacement of horizontal beams.

    2 Shape measurement with 3D stereo-correlation

    This non-invasive optical technique allows measuring a 3D shape of a part of the surface of a structure. For artworks of cultural heritage, this technique is useful since no contact with the artwork is needed; nevertheless, no continuous measures can be obtained along time, only several ones at particular instants, due to the delay needed to install and calibrate the acquisition chain which is composed (Fig. 3) at least of:
    • •
      two stereoscopic cameras,
    • •
      a video beam projector,
    • •
      a processing unit (computer) to capture and correlate images from the cameras.
    Fig. 3. Principles of the measurement technique (left) and stereo cameras (right).
    With two camera images taken from different points of view, the 3D position of visible and identifiable points (or patches) can be obtained by image correlation. The basic images of the artwork cannot be used due to too much contrast on the pictural layer, between large surfaces of too small contrast (aplats or flat tints). Therefore, a more suited pattern (classically a speckle pattern) should be substituted to the original image of the panel. Since no physical speckle pattern can be marked on the painting, a virtual speckle pattern image is projected onto the painted surface, once the initial painting is virtually rubbed out. To do so, an initial image is taken, is numerically treated to produce a ‘negative’ image that is back-projected to the panel to compensate the initial picture luminance (this is the so-called ‘extinction’ of the painting). The virtual speckle pattern is then added to the projection to appear on the panel, Fig. 4. The correlation of the images taken from this virtual speckle pattern by the two cameras allows to derive the 3D position of patches of pixels, as in Maigre and Morestin (2008). This leads to approx. 80,000 3D point locations on a large part of the pictural layer (not up to the border, nevertheless).
    Fig. 4. Left camera, after beam removal: initial image capture (left) and projected speckle pattern on the luminance-compensated image (right).
    Three different measures have been taken:
    • •
      one before the restoration act; this artwork state will then be denoted with Ω(1);
    • •
      one with the horizontal beams removed, which panel state denoted with Ω(2); and
    • •
      one with the new horizontal beams mounted, denoted with Ω(3).
    Apart from an image distortion correction (with the help of a calibration before any data capture), the position of the centers of pixel patches (which are the measured points) are finally converted into physical length in the coordinate system related to one of the cameras. Since, for each of the measured states, the panel may be not repositioned at the same location, each measure is assumed to posses its own coordinate system.

    3 Finite element model and model updating

    3.1 Ideal geometry and wood behavior

    For practical reasons, a finite element model has been design on an ideal geometry (i.e. a perfectly flat and rectangular panel), Fig. 5. This particular state of the artwork, though not physically interesting, will be the reference state for computations, and will be denoted with Ω(0).
    Fig. 5. Finite element model of the ideal geometry for the panel and vertical beams Ω(0) (left two images), interface Γ (center), horizontal beams (right) Ω′(0).
    More precisely, the notation Ω(j) will denote the state (j) on the structure composed of the panel and the vertical beams, while the set of horizontal beams will be denoted with Ω′(j) when needed. These two structures can be seen as two subdomains, and the interface between them will be denoted with Γ, Fig. 5.
    Assuming that all the previously mentioned states Ω(j) are not too far from the reference state Ω(0), the small displacement and small strain assumptions hold, and all the finite element displacement fields will be defined on this reference state, as for the material characteristic coefficients. In this study, we expect the restoration act to be sufficiently short to neglect the relative humidity changes of the environment which the wood is sensitive to. Since only elasticity is modeled herein, other mechanical behavior such as viscoelasticity is neglected for sake of simplicity, though its characteristic time may be of the same order of magnitude that the restoration duration. Nevertheless, this assumption is conservative, since the residual stresses tend to relax in presence of viscoelasticity.
    For the panel, once the sawn on the initial trunk is known, the elastic characteristics are selected as for a standard coniferous wood: spruce from Guitard (1987), Table 1. The elastic behavior is orthotropic, and heterogeneous (the local anisotropic basis changes with the considered point). The position of the tree center is determined with observation of the growth rings on the RT (radial–tangential) section: an off-plane of 125 mm is obtained, Fig. 6.
    Table 1. Material elastic parameters after Guitard (1987) (for standard relative humidity H and specific density ρ).
    SpeciesSpruceBeech
    H (%)13.19.4
    ρ (g/cm3)0.310.63
    ER (MPa)8162040
    ET (MPa)304867
    EL (MPa)802014,100
    GRT (MPa)48500
    GTL (MPa)461980
    GRL (MPa)5581850
    νRT0.670.73
    νLT0.330.46
    νLR0.340.36
    Fig. 6. Determination of local anisotropic basis with growth ring observation.
    The beams are assumed to be homogeneous, sawn along the L (longitudinal) direction. Displacement fields with respect to the reference state are denoted with . Since state Ω(2) will play a particular role in the following, the displacements with respect to Ω(2) are also of interest: they are denoted with U(j); indeed: .

    3.2 Matching experimental points and finite element nodes

    Each measured set of points is related to its own coordinate system, which are in turn different from the coordinate system used for the ideal geometry Ω(0). Therefore each measured set (j) has to be matched to the state Ω(0) in order to define the partial finite element field of measured values  . Note that these measurements are partial information since the displacement is measured only of a part of the boundary, and that only the out-of-plane component of the displacements are obtained, because the speckle pattern is not bonded onto the panel, but merely projected on it.
    To get these partial finite element fields of measured values, three reference points are selected in order to be easily located on pixelized images, both on the states Ω(j)with coordinates X(j) and on a frontal image identified as Ω(0) with coordinates X(0), Fig. 7.
    Fig. 7. Reference points (left) and measured field projected onto the finite element mesh (right) for the initial state, with its own reference points.
    The transformation mapping X(j) to X(0) is expected to be composed of a translation T(j) and a finite rotation R(j). The translation links the centroids of the set of reference points. The finite rotation may be defined for instance with a polar decomposition of the mapping; in this case, we consider that the three reference points define a plane into which each point M(j) has barycentric coordinates λ : M(j) = X(j)λ. With independent points,   with  . The transformation is expected to map M(j) to M(0) = X(0)λ = F(j)M(j) with the gradient of the transformation: . A polar decomposition of F(j) produces the rotation Rj. Unfortunately, this rotation may be composed with a planar symmetry, which is cumbersome to eliminate (see Nesme et al., 2005 and Schmedding and Teschner, 2008). We therefore preferred a simple Gram–Schmidt orthogonalization E(j) of the basis generated by X(j) (and E(0) accordingly). In such a case, the previous approach leads to:   which is exactly the rotation R(j).
    Then, the coordinates of all measured points can be transformed to lie in the coordinate system of Ω(0). Finally, the normal coordinate to the plane of the panel is interpolated at each possible finite element node of the painted side to get a field of normal displacement  , Fig. 8, where z denotes the normal to the panel.
    Fig. 8. Measured fields projected onto the finite element mesh: initial state (left), after beam removal (middle), and after beam replacement (right). Displacement amplified 8 times.

    3.3 Model updating

    Once the partial shape of the different states Ω(j) of the structure composed by the panel and the vertical beams,   or  , have been obtained, these different states have to be reconstructed from the ideal geometry: this is the model updating stage. Since the small displacement assumption holds, the shape updating reduces to find a finite element displacement on the undistorted ideal geometry:  . The column vector of the corresponding nodal displacements is denoted with  . These degrees of freedom (dof) can be split in several sets. First, the dofs at the interface between the panel (with vertical beams) and the horizontal beams are denoted with a subscript Γ. The remaining dofs are denoted with a subscript i; they are themselves split into measured dofs with a subscript c (these dofs are only the out-of-plane component of the displacement at measured nodes), and the non-measured dofs with a subscript r. The measured partial shapes at finite element nodes are stored in column vectors   or  . Finally, we can define C(j) as the Boolean mapping matrix on c dofs (measured dofs), such that  . The superscript (j) is omitted in the following.
    For each state Ω, a part of its boundary is the interface with the horizontal beams Γ; the remaining part, ∂2Ω, is supposed to be traction-free. We will neglect the body forces due to gravity in the following; indeed, all the measurements are performed on the panel in up-right position, therefore the vertical compressive stress on a cross-section S is bounded with σ = mg/S; with a mass of the artwork m ≈ 3 kg, one gets σ≈ 6 kPa which will be negligible with respect to the residual stress to be estimated. On the interface Γ, the structure is submitted to the action of the set of horizontal beams; these may consist of a displacement UΓ and a force density FΓ defined on this interface. The techniques that will be used in the following are derived from model identification techniques as in Calloch et al., 2002, Ladevèze et al., 1994 and Avril et al., 2008. A couple of displacements (U, UΓ) will be said kinematically admissible (KA) simply if U = UΓ on Γ. A couple of stress and interface forces (σ, FΓ) will be said statically admissible (SA) if: divσ = 0 in Ω, σn = 0 on ∂2Ω, and σn = FΓ on Γ. n is the unitary normal vector to the boundary, pointing out of Ω.
    A mechanical state of the studied structure consists of two couples, (U, UΓ) KA and (σ, FΓ) SA, satisfying the constitutive relation, here the elastic behavior: σ = Dε(U) in Ω. In other words, the following constitutive relation error should be null:
    equation1
    with
    equation2
    When dealing with model updating, the mechanical state has moreover to cope with the measured quantities, here: the measured displacement field zTUm on ∂mΩ. Both the model and the measured cannot be perfect, therefore one seeks for a compromise between all the constraints to be satisfied. The model updating proposed approach consists in balancing the verification of the constitutive relation and the measures, by searching the couples (U, UΓ) and (σ, FΓ) as:
    equation3
    in which the term em is an error with respect to the measures, for instance:
    equation4
    ω is a scalar field of weighting terms, taking its values in [0, 1], to take into account confidence levels in the experimental values. α is a singe scalar coefficient (homogeneous to a stiffness) to balance the two terms in the functional, or the cost function, to be minimized (3). These parameters will be precised in the following.
    Note that this problem is not in a closed form until additional informations are stated on the interface fields (UΓ, FΓ).
    Dealing with finite element numerical approximations is easy for the kinematically admissible couples: the displacements (U, UΓ) are replaced by their finite element approximations counterparts (u, uΓ). For the stress field, an additional approximation is to assume a special form, deriving from a displacement field V : σ = Dε(V), which is in turn classically discretized by finite elements into v. D(M) is the Hooke operator field on the panel and the vertical beams, modeling the elastic behavior of the wood material.
    The static admissibility is therefore replaced with its finite element approximation: denoting with fΓ the generalized nodal forces associated to FΓ, (v, fΓ) will be said statically admissible (SA), if:
    or
    equation5
    where K is the finite element stiffness matrix, arising from Hooke operator D. Note that this implies:
    equation6
     (where a superscript T denotes the transposition) is the so-called Schur complement of K on Γ dofs, and finally the discretized static admissibility is merely a relationship between displacements and forces at the interface:  .
    The model updating now consists in finding:
    equation7
    with
    equation8
    u is a kinematically admissible (KA) field, expected to be close to the measurements um. This is a balance between a smooth field (according to equilibrium equations, thanks to the first term), and a field matching measurements (according to the second term). ω is a diagonal weighting matrix (with entries ω in [0, 1]). We may interpret either the field u or v as a smoothing and a prolongation of um on the whole structure.
    The coefficient α can be estimated by using a collocated prolongation of the measurement:  , where Ac is defined similarly as AΓ, but with the set of measured dofs on Ω replacing Γ:
    equation9
    Eventually, it can be adjusted by iterating the identification procedure a few times.
    The choice of the diagonal weighting ω is part of the modeling. It may take into account the reliability in the measurements (a value 1 is a maximal confidence, a value 0 is a minimal one). With no available quality estimator field of the measurements, we only recall that the correlations are less accurate on the boundary of the measured area. We therefore choose to decrease the value of ω, from 1 in almost all the measured area, except on two layers of elements on the boundary of the measured area, driving it linearly to 0 at the boundary within these two layers. As both α and ω depend on the set of measured dofs, they are different for each measured state.
    An equivalent formulation of the updating problem (7) is:
    equation10
    with
    equation11
    This problem can be interpreted as: control a structure (panel and vertical beams) with dofs on Γ to make the displacement on the measured set close to the measured values um. As this will be outlined in the following, this problem may be ill-posed, and may require regularization.
    Each time an updating is produced, the distance to the measures can be evaluated with:
    equation12

    3.4 Relaxed state Ω(2)

    This state, after horizontal beam removal, is similar to the relaxed state in the hole-drilling method used to determine residual stresses. This method has been used for a long time, and more recently, it has been used in conjunction with field measurements in Schajer and Steinzig, 2005, Nelson et al., 2006 and Baldi, 2007 and with finite elements for analyzing the measures, with or without inverse identification, see (Zhang et al., 1997, Shaw and Chen, 1990, Schajer, 2009, Lanza di Scalea et al., 1998 and Cárdenas-Garcı´a and Preidikman, 2006). Since residual stresses are self-balanced on the considered structure, their energy is null on any displacement change on the same structure. The hole-drilling method therefore relies on a geometric modification. Here, the removal of the horizontal beams may be considered as such a method. Nevertheless, no residual stresses on the configuration Ω(2) can be reached without a deeper material removal, which is not allowed. So, we can only access to additional residual stresses, or equivalently, we may consider residual stresses on state Ω(2) as null: σ(2) = 0.
    The measured maximal average curvature of the painted side is about .
    The previous model updating approach is used with fΓ = 0, and so: vΓ = 0 and v = 0. In such a case, the displacement   mapping Ω(0) to Ω(2) is selected as u of the previous approach, for which Eq. (10) leads to:
    equation13
    Since   is the displacement with respect to Ω(0), note that the measured displacement with respect to Ω(0) is used in the right-hand-side. As soon as α(2)ω(2) is non null,   is obviously symmetric, positive, definite (SPD).
    This identification is performed with an error estimation  . Fig. 9 plots the weighting field ω(2) and the contribution to the error with respect to the measures .
    Fig. 9. Weighting function ω(2) (left) and contribution to the error with respect to the measures  (right), after beam removal.

    3.5 Initial state Ω(1)

    This state, prior to the restoration, corresponds to the (assumed perfect) gluing between the panel and the beams. Model updating from Ω(0) to Ω(1) requires the field . Alternatively, once   has been settled, the more meaningful displacement field  can be searched for. Similarly,   on the measured set of state Ω(1).
    The maximal average curvature of the painted side is about  , therefore the effect of the horizontal beams is to reduce the free curvature of state Ω(2).
    Since perfect gluing is assumed, the force fΓ is a priori non null, and is not known. In the previous updating approach, we therefore consider vΓ as an unknown. The minimization of the functional g in Eq. (10) with respect to both u and vΓ, after algebraic manipulations using the property  , leads to: vΓ = uΓ, and:
    equation14
    with
    As soon as α(1)ω(1) is non null, the left-hand-side can be shown to be symmetric, positive but semi-definite only, due to the minus sign before the Schur complement on Γ. Its kernel is the set of control dofs uΓ, whose recovering u = AΓuΓ is null on the measured set, i.e. C(1)AΓuΓ = 0; therefore, if C(1)AΓ is not injective, the problem is ill-posed. An interpretation is the following: if there are too many control dofs on Γ, or too small measured dofs, the control is not unique. The model should therefore be sufficiently refined on the measured region. An alternative solution, used here, is to regularize the functional to be minimized: a regularizing term, avoiding uncontrolled solutions on Γ, but leaving rigid body motions free (these are filtered with measures) can be added to the functional. The simpler choice is:
    equation15
    which leads to the problem, similar to Eq. (13):
    equation16
    and u(1) = AΓuΓ. This identification is performed with an error estimation  .
    Fig. 10 plots the weighting field ω(1) and the contribution to the error with respect to the measures  .
    Fig. 10. Weighting function ω(1) (left) and contribution to the error with respect to the measures  (right), for the initial state.

    3.6 Final state Ω(3)

    The measured average maximal curvature is  . Therefore, though the new beams are less stiff that the older ones, their effect is to render the panel plane. This can be understood by the fact that the relaxed state of the horizontal former beams was itself permanently bent. Therefore, though the stiffness of the structure is lower with the new beams, this restoration act does not automatically reduce short-term residual stresses.
    Up to this point, the final state Ω(3), after replacement of horizontal beams, does not require additional measurements, since the new beams, made with spruce, are supposed to be known with a perfect initial state without residual stress. The beam replacement can therefore be simulated. In a first step, the matching of displacement in the assembly reads:   at least along the normal vector n to Γ (for a frictionless contact model) or for all components (for a perfect gluing), where   is the displacement field on the new horizontal beams. The panel and vertical beams strain is measured with reference to Ω(2), and are therefore  . This leads to a classical elastic problem on Ω(0) with a prestress   on the panel and vertical beams, and   as unknown. This problem is semi-definite positive and the displacement solution is obtained up to an undetermined global rigid body motion (rbm). With this ideal geometry of the new horizontal beams, and a perfect gluing condition, the average simulated curvature is 0.011 m−1 and the error estimation   (the unknown rbm of the problem for state Ω(3) is selected in order to minimize  ).
    To get a more realistic model, one has to take into account the fact that, in order to allow the mounting of the new beams, their height had to be reduced when compared to the old ones. With an estimated height reduction of 1.25 mm, the simulation of the state Ω(3) is performed with an elastic 2-body problem with unilateral contact conditions, and the obtained average simulated curvature is 0.064 m−1, with .
    Fig. 11 plots the weighting field ω(3) and the contributions to the error with respect to the measures  , depending on the assembly model.
    Fig. 11. Weighting function ω(3) (left) and contribution to the error with respect to the measures  with perfect assembly (middle) and a contact with gap (right), with beam replacement.

    4 Estimation of the residual stresses

    With the previous developments, and still assuming small perturbations in all of the following, the computed residual stresses on the panel are easily obtained:
    equation17
    equation18
    equation19
    The von Mises component of these residual stresses are depicted in Fig. 12. Table 2recalls the obtained numerical values, for the present discretization with ne = 7788 elements, and with a finer discretization of ne = 35,094 elements (two thirds of them are 8-node cubes, the remaining ones are 6-node prisms). The residual stress estimation is still satisfactory, except for the perfect gluing state Ω(3) whose model is erroneous.
    Fig. 12. Numerical results (coarse discretization): residual stresses/MPa on the panel (displacement amplified 10 times). From left to right: Ω(1); Ω(2); Ω(3), perfect assembly; Ω(3), contact with gap.
    Table 2. Numerical values obtained with two discretization levels: ne is the number of finite elements; stress levels are given in MPa.
    Perfect gluing
    Contact
    ne (%) (%) (%) (%)
    778816.612.316.70622.2261.1
    350948.418.614.4082.34.15281.7
    Though it is not a systematic result, the present restoration acts decreases the residual stress in the panel: the maximum von Mises stress σVM before restoration is 18.6 MPa, and is 1.7 MPa after restoration (for the assembly with 1.25 mm gap and the finer discretization).

    5 Conclusions and outlooks

    In this article, we exemplify that a restoration act on a painted panel of cultural heritage can be considered as a mechanical test, and that with field measurements and modeling, information can be drawn on the structure. Experimental data and numerical modeling are used together to analyze this test, with a model updating approach. This allows to estimate the residual stresses in the structure before and after the restoration.
    Though it is the case here, the replacement of old horizontal beams with less stiff new ones does not necessarily decrease the residual stress, since the old beams may exhibit permanent curvature. An other solution would have been a dedicated shape of the replacement parts on an artwork, as in Ciatti et al., 1999 and Uzielli and Casazza, 1992. Indeed such a shape could be designed for the new beams: for instance, taking only into account a curvature   for sawing them, could decrease again the residual stresses.
    The somehow large discrepancies between the model and the measurements for the restored panel may arise from different sources:
    • •
      the model does not take into account 2 cracks on the panel;
    • •
      the mounting of the new beams can have damaged the panel;
    • •
      a too rough estimation of elastic parameters (the identification performed here concerns the shape updating, or the residual stress identification, and not the material characteristics);
    • •
      the neglected viscoelastic behavior.
    The final replacement of the horizontal beams of the cradle are used as a verification step for the model. An other interesting tool to check the validity of the model would be a local contribution to the error in order to locate the areas where the model is incompatible with the measures. This could be the role of the term  in the cost function to be minimized, if the matching to the measures on the restored artwork is also performed.
    Once established, such a model can serve as a predictory tool for assessing risks on the artwork, useful for restorers and conservators, by allowing virtual simulation of the influence of several conservation conditions, and possibly several restoration acts.

    Acknowledgements

    The authors wish to thank Emmanuel Maurin (LRMH, Laboratoire de Recherche des Momunents Historiques) for fruitful discussion on the restoration technique, Daniel Jaunard and Patrick Mandron (restorers), and Marie-Claude Leonelli (DRAC, Direction Régionale des Affaires Culturelles) for getting access to the panel painting. This work has been supported by European COST Action IE0601 ‘Wood Science for Conservation of Cultural Heritage’.1

    References

      • Avril et al., 2008
      • S. Avril, M. Bonnet, A.S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron
      • Overview of identification methods of mechanical parameters based on full-field measurements
      • Experimental Mechanics, Volume 48, 2008, pp. 381–402
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (263)
      • Baldi, 2007
      • A. Baldi
      • Full field methods and residual stress analysis in orthotropic material. I. Linear approach
      • International Journal of Solids and Structures, Volume 44, 2007, pp. 8229–8243
      • Article
         | 
         PDF (2252 K)
         | 
        View Record in Scopus
        Citing articles (18)
      • Braovac et al., 2007
      • Braovac, S., Lochen, R., Aarseth, B., Sommer-Larsen, A., 2007. The viking ship finds: preservation challenges and the search for potential solutions. In: First Meeting of the COST Action IE0601 Wood Science for Conservation of Cultural Heritage.Tervuren.
      • Calloch et al., 2002
      • S. Calloch, D. Dureisseix, F. Hild
      • Identification de modèles de comportement de matériaux solides: utilisation d’essais et de calculs
      • Technologies et Formations, Volume 100, 2002, pp. 36–41 (In french)
      • View Record in Scopus
        Citing articles (21)
      • Cárdenas-Garcı´a and Preidikman, 2006
      • J.F. Cárdenas-Garcı´a, S. Preidikman
      • Solution of the moiré hole drilling method using a finite-element-method-based approach
      • International Journal of Solids and Structures, Volume 43, 2006, pp. 6751–6766
      • Article
         | 
         PDF (1116 K)
         | 
        View Record in Scopus
        Citing articles (20)
      • Cavagnero and Revelli, 2009
      • P. Cavagnero, R. Revelli
      • Numerical model application for the restoration of the Racconigi Royal Park (CN, Italy)
      • Journal of Cultural Heritage, Volume 10, 2009, pp. 514–519
      • Article
         | 
         PDF (855 K)
         | 
        View Record in Scopus
        Citing articles (1)
      • Chassagne et al., 2006
      • Chassagne, P., Dionisi Vici, P., Vidal-Sallé, E., Uzielli, L., Jullien, J.F., 2006. Mechanical consequences of hygroscopic variations on wooden panel paintings: development of a predictive model. In: Proceedings of the 4th International Conference of joint meeting of European Society for Wood Mechanics and COST Action E35. Florence, Italy.
      • Chassagne et al., 2007
      • P. Chassagne, E. Bou-Saı¨d, A. Ceccotti, J.F. Jullien, M. Togni
      • The contribution of numerical simulation for the diagnosis of the conservation of art objects: application to Antonio Santucci’s armillary sphere of the 16th century
      • Journal of Cultural Heritage, Volume 8, 2007, pp. 215–222
      • Article
         | 
         PDF (832 K)
         | 
        View Record in Scopus
        Citing articles (8)
      • Ciatti et al., 1999
      • Ciatti, M., Castelli, C., Santacesaria, A., 1999. Dipinti su tavola, la tecnica e la conservazione dei supporti. Edifir (In italian).
      • Dureisseix et al., 2006
      • Dureisseix, D., Gril, J., Arnould, O., 2006. Mechanical modeling of the activity of the flexible frame. In: Mohen, J.P., Menu, M., Mottin, B. (Eds.), Mona Lisa, inside the painting. Abrams, New York (Chapter II.6).
      • Guitard, 1987
      • Guitard, D., 1987. Mécanique du matériau bois et composites. Cepadues Editions (In french).
      • Ladevèze et al., 1994
      • P. Ladevèze, D. Nedjar, M. Reynier
      • Updating of finite element models using vibration tests
      • AIAA Journal, Volume 32, 1994, pp. 1485–1491
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (57)
      • Lanza di Scalea et al., 1998
      • F. Lanza di Scalea, S.S. Hong, G.L. Cloud
      • Whole-field strain measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method
      • Experimental Mechanics, Volume 38, 1998, pp. 55–60
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (29)
      • Leconte et al., 2009
      • Leconte, S., Vion, M., Clarke, C., 2009. Attempt to find the ancient sound: from the modelisation to the reconstruction of the Erard Piano in Musée de la musique. In: International Conference on Wooden Cultural Heritage: Evaluation of Deterioration and Management of Change, COST Action IE0601 Wood Science for Conservation of Cultural Heritage. Hamburg.
      • Maigre and Morestin, 2008
      • Maigre, H., Morestin, F., 2008. Image correlation applied to wood painting. In: Photomechanics 2008. Loughborough, UK.
      • Marcon, 2009
      • Marcon, B., 2009. Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Ph.D. thesis. University Montpellier 2, Università degli studi di Firenze (In french).
      • Mele et al., 2003
      • E. Mele, A. De Luca, A. Giordano
      • Modelling and analysis of a basilica under earthquake loading
      • Journal of Cultural Heritage, Volume 4, 2003, pp. 355–367
      • Article
         | 
         PDF (1134 K)
         | 
        View Record in Scopus
        Citing articles (38)
      • Nelson et al., 2006
      • D.V. Nelson, A. Makino, T. Schmidt
      • Residual stress determination using hole drilling and 3D image correlation
      • Experimental Mechanics, Volume 46, 2006, pp. 31–38
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (40)
      • Nesme et al., 2005
      • Nesme, M., Payan, Y., Faure, F., 2005. Efficient, physically plausible finite elements. In: Dingliana, J., Ganovelli, F. (Eds.), Proceedings of EUROGRAPHICS 2005.
      • Rafiee et al., 2008
      • A. Rafiee, M. Vinches, C. Bohatier
      • Modelling and analysis of the Nıˆmes arena and the Arles aqueduct subjected to a seismic loading, using the Non-Smooth Contact Dynamics method
      • Engineering Structures, Volume 30, 2008, pp. 3457–3467
      • Article
         | 
         PDF (7890 K)
         | 
        View Record in Scopus
        Citing articles (20)
      • Rothe, 1998
      • Rothe, A., 1998. Critical history of panel painting restoration in italy. In: Dardes, K., Rothe, A. (Eds.), The Structural Conservation of Panel Paintings: Proceedings of a Symposium at the J. Paul Getty Museum. The Getty Conservation Institute, Los Angeles, pp. 188–199.
      • Saft and Kaliske, 2009
      • Saft, S., Kaliske, M., 2009. Supporting the restoration of historical pianofortes by numerical simulation. In: International Conference on Wooden Cultural Heritage: Evaluation of Deterioration and Management of Change, COST Action IE0601 Wood Science for Conservation of Cultural Heritage. Hamburg, p. 8.
      • Schajer, 2009
      • G.S. Schajer
      • Advances in hole-drilling residual stress measurements
      • Experimental Mechanics, Volume 50, 2009, pp. 159–168
      • Schajer and Steinzig, 2005
      • G.S. Schajer, M. Steinzig
      • Full-field calculation of hole drilling residual stresses from electronic speckle pattern interferometry data
      • Experimental Mechanics, Volume 45, 2005, pp. 526–532
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (74)
      • Schmedding and Teschner, 2008
      • R. Schmedding, M. Teschner
      • Inversion handling for stable deformable modelling
      • The Visual Computer: International Journal of Computer Graphics, Volume 24, 2008, pp. 625–633
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (18)
      • Shaw and Chen, 1990
      • D. Shaw, H.Y. Chen
      • A finite-element technique to analyze the data measured by the hole-drilling method
      • Experimental Mechanics, Volume 30, 1990, pp. 120–123
      • View Record in Scopus
         | 
        CrossRef
        Citing articles (7)
      • Uzielli and Casazza, 1992
      • Uzielli, L., Casazza, O., 1992. Conservazione dei dipinti su tavola. Nardini Editore (In italian).
      • Valluzzi et al., 2002
      • M.R. Valluzzi, A. Bondı`, F. da Porto, P. Franchetti, C. Modena
      • Structural investigations and analyses for the conservation of the ‘Arsenale’ of Venice
      • Journal of Cultural Heritage, Volume 3, 2002, pp. 65–71
      • Article
         | 
         PDF (1205 K)
         | 
        View Record in Scopus
        Citing articles (7)
      • Zhang et al., 1997
      • F. Zhang, A.J. Kassab, D.W. Nicholson
      • A boundary element solution of an inverse elasticity problem and applications to determining residual stress and contact stress
      • International Journal of Solids and Structures, Volume 34, 1997, pp. 2073–2086
      • Article
         | 
         PDF (915 K)
         | 
        View Record in Scopus
        Citing articles (19)
    • ⁎ 
      Corresponding author. Tel.: +33 4 72 43 83 65; fax: +33 4 78 89 09 80.
    • 1
      http://www.woodculther.org.

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S0020768310004464
    at December 04, 2016
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ▼  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ▼  Dec 04 (38)
          • Study of the Effects and Interaction of Operationa...
          • Impact of Applying Radiant Barrier Fitted Beneath ...
          • Problems on Commercialisation of Genetically Modif...
          • Potential Identification of Compacted Soil as Alte...
          • Fabrication and Characterization of Porous and Non...
          • Study on the Floristic Composition and Forest Stru...
          • Microcellular processing of polylactide-hyperbranc...
          • Evaluation of elastic modulus and hardness of crop...
          • Development and application of wood adhesives in C...
          • Composites from wood and plastics
          • Effects of silane on the properties of wood-plasti...
          • Preformed amide-containing biopolymer for improvin...
          • Biobased adhesives and non-conventional bonding
          • The effects of different silane crosslinking appro...
          • Effect of oxalic acid and steam pretreatment on th...
          • Coir fiber reinforced polypropylene composite pane...
          • Radiolytically depolymerized sodium alginate impro...
          • Effects of volatile chemical components of wood sp...
          • Development of kinetic model for testing antifunga...
          • Control of Fusarium spp. causing damping-off of pi...
          • Antimicrobial activities of selected essential oil...
          • In vitro and in situ screening of lactic acid bact...
          • Using crack propagation fracture toughness to char...
          • Commercial Laurus nobilis L. and Syzygium aromatic...
          • Wood decay by Chlorociboria aeruginascens (Nyl.) K...
          • Antifungal activity of the essential oils from Cup...
          • Bioremediation of creosote contaminated soil in bo...
          • Enhanced decomposition of waste activated sludge v...
          • Optimal vibration control of smart fiber reinforce...
          • MOE prediction in Abies pinsapo Boiss. timber: App...
          • Numerical modelling of timber connections under fi...
          • Thermal analysis of wood-based test cells
          • Air-coupled ultrasonic assessment of wood veneer
          • Follow-up of a panel restoration procedure through...
          • Non-destructive evaluation of beech and oak wood b...
          • Non-destructive testing of wood and wood-based mat...
          • Thermal conductivity of sorghum and sorghum–thermo...
          • Effects of innovation on the European wood industr...
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ►  June (1003)
        • ►  Jun 30 (29)
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.