Published Date
, Volume 21, Issue 6, pp 1665–1674
Original Paper
Cite this article as:
Kammoun, M., Lundquist, L. & Ardebili, H. Ionics (2015) 21: 1665. doi:10.1007/s11581-014-1311-0
Author
An ideal proton exchange membrane (PEM) used in fuel cells must facilitate fast proton transport, insulate electron conduction, and exhibit adequate thermal and mechanical stability among others. One of the main issues with PEMs is the degradation of proton conductivity as a consequence of membrane dehydration. In this study, an effective bio-friendly solution is sought through the utilization of coconut-shell-based activated carbon (AC) that can act as a “molecular sponge”. Our experimental results demonstrate almost an order of magnitude improvement in proton conductivity with only 0.7 % AC particles and a significant enhancement in water sorption of more than 80 % without any compromise in mechanical properties. The mechanism of proton conductivity enhancement in Nafion/AC composite membrane is elucidated, and a new model of proton conductivity as a function of filler content is proposed exhibiting three distinct phases of activated carbon influence.
References
For further details log on website :
http://link.springer.com/article/10.1007/s11581-014-1311-0
, Volume 21, Issue 6, pp 1665–1674
Original Paper
- First Online:
- 29 November 2014
DOI: 10.1007/s11581-014-1311-0
Author
An ideal proton exchange membrane (PEM) used in fuel cells must facilitate fast proton transport, insulate electron conduction, and exhibit adequate thermal and mechanical stability among others. One of the main issues with PEMs is the degradation of proton conductivity as a consequence of membrane dehydration. In this study, an effective bio-friendly solution is sought through the utilization of coconut-shell-based activated carbon (AC) that can act as a “molecular sponge”. Our experimental results demonstrate almost an order of magnitude improvement in proton conductivity with only 0.7 % AC particles and a significant enhancement in water sorption of more than 80 % without any compromise in mechanical properties. The mechanism of proton conductivity enhancement in Nafion/AC composite membrane is elucidated, and a new model of proton conductivity as a function of filler content is proposed exhibiting three distinct phases of activated carbon influence.
References
- Herring AM (2006) Inorganic–polymer composite membranes for proton exchange membrane fuel cells. J Macromol Sci Polym Rev 46(3):245–296. doi:10.1080/00222340600796322CrossRefGoogle Scholar
- 2.Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33(1):503–555. doi:10.1146/annurev.matsci.33.022702.154657CrossRefGoogle Scholar
- 3.Cele NP, Ray SS, Pillai SK, Ndwandwe M, Nonjola S, Sikhwivhilu L, Mathe MK (2009) Carbon nanotubes based Nafion composite membranes for fuel cell applications. Fuel Cells 0:1–8. doi:10.1002/fuce.200900056
- 4.Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energy Environ Sci 1(1):101. doi:10.1039/b808149mCrossRefGoogle Scholar
- 5.Teng H (2012) Overview of the development of the fluoropolymer industry. Appl Sci 2(4):496–512. doi:10.3390/app2020496CrossRefGoogle Scholar
- 6.Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559. doi:10.1039/b509097kCrossRefGoogle Scholar
- 7.Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585CrossRefGoogle Scholar
- 8.Chen PY, Chiu CP, Hong CW (2009) Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes. J Power Sources 194(2):746–752. doi:10.1016/j.jpowsour.2009.06.011CrossRefGoogle Scholar
- 9.Chien H-C, Tsai L-D, Lai C-M, Lin J-N, Zhu C-Y, Chang F-C (2013) Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells. J Power Sources 226:87–93. doi:10.1016/j.jpowsour.2012.10.017CrossRefGoogle Scholar
- 10.Majsztrik PW, Satterfield MB, Bocarsly AB, Benziger JB (2007) Water sorption, desorption and transport in Nafion membranes. J Membr Sci 301(1–2):93–106. doi:10.1016/j.memsci.2007.06.022CrossRefGoogle Scholar
- 11.Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838CrossRefGoogle Scholar
- 12.Lee J, Yi C-W, Kim K (2012) The electrochemical properties of the porous Nafion membrane for proton exchange membrane fuel cells (PEMFCs). Bull Kor Chem Soc 33(5):1788–1790. doi:10.5012/bkcs.2012.33.5.1788CrossRefGoogle Scholar
- 13.Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223CrossRefGoogle Scholar
- 14.Zawodzinski TA, Derouin JC, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047CrossRefGoogle Scholar
- 15.Kannan AG, Choudhury NR, Dutta NK (2009) In situ modification of Nafion® membranes with phospho-silicate for improved water retention and proton conduction. J Membr Sci 333(1–2):50–58. doi:10.1016/j.memsci.2009.01.048CrossRefGoogle Scholar
- 16.Sahu AK, Jalajakshi A, Pitchumani S, Sridhar P, Shukla AK (2012) Endurance of Nafion-composite membranes in PEFCs operating at elevated temperature under low relative-humidity. J Chem Sci 124:529–536CrossRefGoogle Scholar
- 17.Cabasso I, Liu Z-Z (1985) The permselectivity of ion-exchange membranes for non-electrolyte liquid mixtures I. Separation of alcohol/water mixtures with nafion hollow fibers. J Membr Sci 24:101–119CrossRefGoogle Scholar
- 18.Hofmann DW, Kuleshova L, D′Aguanno B (2008) Molecular dynamics simulation of hydrated Nafion with a reactive force field for water. J Mol Model 14(3):225–235. doi:10.1007/s00894-007-0265-9CrossRefGoogle Scholar
- 19.Zhang YF, Wang SJ, Xiao M, Bian SG, Meng YZ (2009) The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. Int J Hydrog Energy 34:4379–4386. doi:10.1016/j.ijhydene.2008.12.092CrossRefGoogle Scholar
- 20.Navarra MA, Croce F, Scrosati B (2007) New, high temperature superacid zirconia-doped Nafion™ composite membranes. J Mater Chem 17(30):3210. doi:10.1039/b702322gCrossRefGoogle Scholar
- 21.Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
- 22.Rhee CH, Kim HK, Chang H, Lee JS (2005) Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells. Chem Mater 17:1691–1697CrossRefGoogle Scholar
- 23.Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33(1):129–154. doi:10.1146/annurev.matsci.33.022702.154702CrossRefGoogle Scholar
- 24.Chen Z, Holmberg B, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRefGoogle Scholar
- 25.Tricoli V, Nannetti F (2003) Zeolite–Nafion composites as ion conducting membrane materials. Electrochim Acta 48(18):2625–2633. doi:10.1016/s0013-4686(03)00306-2CrossRefGoogle Scholar
- 26.Ijeri V, Lucandrea C, Bianco S, Tortello M, Spinelli P, Tresso E (2010) Nafion and carbon nanotube nanocomposites for mixed proton and electron conduction. J Membr Sci 363(1–2):265–270. doi:10.1016/j.memsci.2010.07.037CrossRefGoogle Scholar
- 27.Saccà A, Carbone A, Pedicini R, Portale G, D’Ilario L, Longo A, Martorana A, Passalacqua E (2006) Structural and electrochemical investigation on re-cast Nafion membranes for polymer electrolyte fuel cells (PEFCs) application. J Membr Sci 278(1–2):105–113. doi:10.1016/j.memsci.2005.10.047CrossRefGoogle Scholar
- 28.Thomassin J-M, Kollar J, Giuseppe C, Germain A, Jérôme R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membr Sci 303(1–2):252–257. doi:10.1016/j.memsci.2007.07.019CrossRefGoogle Scholar
- 29.Matsuyama M, Kokufuta E, Kusumi T, Harada K (1980) Ion percolation and insulator-to-conductor transition in Nafion perfluorosulfonic acid membranes. Macromolecules 13:198–200CrossRefGoogle Scholar
- 30.Zhen Y, Xiaofeng P, Buxuan W, Duujong L, Yuanyuan D (2007) Modeling of ion conductivity in Nafion membranes. Front Energy Power Eng China 1(1):58–66. doi:10.1007/s11708-007-0005-yCrossRefGoogle Scholar
- 31.Li JY, Nasser SN (2000) Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech Mater 32:303–314CrossRefGoogle Scholar
- 32.Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237(1–2):145–161. doi:10.1016/j.memsci.2004.03.009CrossRefGoogle Scholar
- 33.Li Q, Wood E, Ardebili H (2013) Elucidating the mechanisms of ion conductivity enhancement in polymer nanocomposite electrolytes for lithium ion batteries. Appl Phys Lett 102(24):243903. doi:10.1063/1.4809837CrossRefGoogle Scholar
- 34.Lartey RB, Acquah F, Nketia KS (1999) Developing national capability for manufacture of activated carbon from agricultural wastes. The Ghana Engineer, pp 1–5. http://www.africantechnologyforum.org/GhIE/ActCarbon.PDF
- 35.Cameron Carbon Incorporated (2006) Activated carbon manufacture, structure & properties. Activated Carbon & Related technology, pp 1–11. http://www.cameroncarbon.com/documents/carbon_structure.pdf
- 36.Brennan JK, Thomson KT, Gubbins KE (2002) Adsorption of water in activated carbons: effects of pore blocking and connectivity. Langmuir 18:5438–5447CrossRefGoogle Scholar
- 37.US Research Nanomaterials Inc. US Research Nanomaterials, Inc. http://www.us-nano.com/home
- 38.Lin H-L, Yu TL, Huang C-H, Lin T-L (2005) Morphology study of Nafion membranes prepared by solutions casting. J Polym Sci B Polym Phys 43(21):3044–3057. doi:10.1002/polb.20599CrossRefGoogle Scholar
- 39.Gomadam PM, Weidner JW (2005) Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int J Energy Res 29(12):1133–1151. doi:10.1002/er.1144CrossRefGoogle Scholar
- 40.Huang YF, Chuang LC, Kannan AM, Lin CW (2009) Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications. J Power Sources 186(1):22–28. doi:10.1016/j.jpowsour.2008.09.072CrossRefGoogle Scholar
- 41.Hink S, Wagner N, Bessler WG, Roduner E (2012) Impedance spectroscopic investigation of proton conductivity in Nafion using transient electrochemical atomic force microscopy (AFM). Membranes 2(2):237–252. doi:10.3390/membranes2020237CrossRefGoogle Scholar
- 42.Silva RF, Francesco MD, Pozio A (2004) Solution-cast Nafion® ionomer membranes: preparation and characterization. Electrochim Acta 49:3211–3219. doi:10.1016/j.electacta.2004.02.035CrossRefGoogle Scholar
- 43.Kawano Y, Wang Y, Palmer RA, Aubuchon SR (2002) Stress–strain curves of Nafion membranes in acid and salt forms. Ciênc Tecnol 12:96–101Google Scholar
- 44.Ma C-H, Yu TL, Lin HL, Huang Y-T, Chen Y-L, Jeng U-S, Lai Y-H, Sun Y-S (2009) Morphology and properties of Nafion membranes prepared by solution casting. Polymer 50:1764–1777. doi:10.1016/j.polymer.2009.01.060CrossRefGoogle Scholar
- 45.Kundu S, Simon LC, Fowler M, Grot S (2005) Mechanical properties of Nafion™ electrolyte membranes under hydrated conditions. Polymer 46(25):11707–11715. doi:10.1016/j.polymer.2005.09.059CrossRefGoogle Scholar
- 46.Cells DF (2009) DuPont Nafion® PFSA Membranes
- 47.Muller EA, Gubbins KE (1998) Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon 36:1433–1438CrossRefGoogle Scholar
- 48.Sakai T, Takenako H, Wakabayashi N, Kawami Y, Torikai E (1985) Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc 132:1328–1332CrossRefGoogle Scholar
- 49.Buchi FN, Schere GG (2001) Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. J Electrochem Soc 148:A183–A188. doi:10.1149/1.1345868CrossRefGoogle Scholar
- 50.Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384. doi:10.1016/j.ijhydene.2010.05.017CrossRefGoogle Scholar
- 51.Lin H-L, Yu TL, Han F-H (2006) A method for improving ionic conductivity of Nafion membranes and its application to PEMFC. J Polym Res 13:379–385. doi:10.1007/s10965-006-9055-9CrossRefGoogle Scholar
- 52.Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol–gel derived Nafion–silica hybrid membrane for proton electrolyte membrane fuel cell applications. J Electrochem Soc 148:A898–A904. doi:10.1149/1.1383071CrossRefGoogle Scholar
- 53.Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO4 2−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155. doi:10.1016/j.memsci.2006.01.028CrossRefGoogle Scholar
- 54.Kumar R, Xu C, Scott K (2012) Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RSC Adv 2:8777–8782. doi:10.1039/c2ra20225eCrossRefGoogle Scholar
- 55.Soboleva T, Xie Z, Shi Z, Tsang E, Navessin T, Holdcroft S (2008) Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J Electroanal Chem 622(2):145–152. doi:10.1016/j.jelechem.2008.05.017CrossRefGoogle Scholar
- 56.G.-Cuenca M, Zipprich W, Boukamp BA, Pudmich G, Tietz F (2001) Impedance studies on chromite–titanate porous electrodes under reducing conditions. Fuel Cells 1:256–264CrossRefGoogle Scholar
For further details log on website :
http://link.springer.com/article/10.1007/s11581-014-1311-0
No comments:
Post a Comment