Published Date
, Volume 74, Issue 6, pp 809–819
Open AccessOriginal
Cite this article as:
Konnerth, J., Kluge, M., Schweizer, G. et al. Eur. J. Wood Prod. (2016) 74: 809. doi:10.1007/s00107-016-1087-1
Author
Due to the increasing interest in applying a wider range of wood species for structural purposes, nine European softwood and hardwood species (ash, beech, birch, hornbeam, larch, oak, poplar, black locust and spruce) were assessed for their ability to be bonded with three different commercial adhesive systems (melamine–urea–formaldehyde, one-component polyurethane and phenol–resorcinol–formaldehyde). Tensile shear strength and delamination tests were conducted according to European standards, for all tests including the corresponding wood species as adhesive joints and as a solid wood reference. When tested in dry condition, the threshold of solid wood tensile shear strength was reached by all species–adhesive combinations. By contrast, testing in wet condition revealed distinct performance reductions for certain combinations. This trend was confirmed by delamination testing. Overall, the results indicate that extrapolation of test results achieved with a specific wood species (as recommended in the current standard for lap-joint tests) towards other species is highly problematic and has to be done with caution.
References
For further details log on website :
http://link.springer.com/article/10.1007/s00107-016-1087-1
, Volume 74, Issue 6, pp 809–819
Open AccessOriginal
- First Online:
- 23 July 2016
DOI: 10.1007/s00107-016-1087-1
Author
Due to the increasing interest in applying a wider range of wood species for structural purposes, nine European softwood and hardwood species (ash, beech, birch, hornbeam, larch, oak, poplar, black locust and spruce) were assessed for their ability to be bonded with three different commercial adhesive systems (melamine–urea–formaldehyde, one-component polyurethane and phenol–resorcinol–formaldehyde). Tensile shear strength and delamination tests were conducted according to European standards, for all tests including the corresponding wood species as adhesive joints and as a solid wood reference. When tested in dry condition, the threshold of solid wood tensile shear strength was reached by all species–adhesive combinations. By contrast, testing in wet condition revealed distinct performance reductions for certain combinations. This trend was confirmed by delamination testing. Overall, the results indicate that extrapolation of test results achieved with a specific wood species (as recommended in the current standard for lap-joint tests) towards other species is highly problematic and has to be done with caution.
References
- Aicher S, Reinhardt H-W (2006) Delaminierungseigenschaften und Scherfestigkeiten von verklebten rotkernigen Buchenholzlamellen [Delamination characteristics and shear strength of bonded beech lamellas with red heartwood]. Holz Roh-Werkst 65:125–136CrossRefGoogle Scholar
- Ammann S, Schlegel S, Beyer M, Aehlig K, Lehmann M, Jung H, Niemz P (2016) Quality assessment of glued ash wood for construction engineering. Eur J Wood Wood Prod 74(1):67–74. doi:10.1007/s00107-015-0981-2CrossRefGoogle Scholar
- Bernasconi A (2004) Verleimung von Laubholz für den tragenden Einsatz [Gluing of hardwood for supporting construction elements]. Schweiz Z Forstwes 155:533–539CrossRefGoogle Scholar
- Clauß S, Kläusler O, Allenspach K, Niemz P, Bächle F, Dijkstra DJ (2008) Forschungsbericht für das Kuratorium des Fonds zur Förderung der Wald- und Holzforschung Nr. 2006.08: Untersuchung zur Optimierung von 1 K-PUR Klebstoffen für die Verklebung von Vollholz: Abschlussbericht [Research report for the board of trustees of the fund to support forest and wood research No 2006.08: Investigations to optimize 1C-PUR adhesives for bonding of solid wood: Final report]. ETH Zürich, Institute for Building materials, Wood physics, Zurich
- EN 15425 (2008) Adhesives—one component polyurethane for load bearing timber structures—classification and performance requirements. European Committee for Standardization, Brussels
- EN 301 (2013) Adhesives, phenolic and amino plastic, for load-bearing timber structures—Classification and performance requirements. European Committee for Standardization, Brussels
- EN 302-1 (2013) Adhesives for load-bearing timber structures—test methods—part 1: determination of longitudinal tensile shear strength. European Committee for Standardization, Brussels
- EN 302-2 (2013) Adhesives for load-bearing timber structures—test methods—part 2: determination of resistance to delamination. European Committee for Standardization, Brussels
- Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manag 260:939–947CrossRefGoogle Scholar
- Frihart CR (2009) Adhesive groups and how they relate to the durability of bonded wood. J Adhes Sci Technol 23:601–617CrossRefGoogle Scholar
- Gardner DJ, Generalla NC, Gunnells DW, Wolcott MP (1991) Dynamic wettability of wood. Langmuir 7:2498–2502CrossRefGoogle Scholar
- Gindl W, Gupta HS (2002) Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Compos Part A Appl Sci Manuf 33:1141–1145CrossRefGoogle Scholar
- Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207CrossRefGoogle Scholar
- Hass P, Kläusler O, Schlegel S, Niemz P (2014) Effects of mechanical and chemical surface preparation on adhesively bonded wooden joints. Int J Adhes Adhes 51:95–102CrossRefGoogle Scholar
- Hübner U (2009) Laubhölzer für lastabtragende Bauteile im Bauwesen [Hardwoods for load-bearing elements in the constructive sector]. OIB Aktuell 10:12–23Google Scholar
- Jiang Y, Schaffrath J, Knorz M, Winter S, van de Kuilen J-W (2014) Applicability of various wood species in glued laminated timber: parameter study on delamination resistance and shear strength. In: WCTE 2014 Proc. World Conf. Timber Eng. Quebec, Canada, 10–14 Aug 2014
- Kamke FA, Lee JN (2007) Adhesive penetration in wood: a review. Wood Fiber Sci 39:205–220Google Scholar
- Kläusler O, Hass P, Amen C, Schlegel S, Niemz P (2014a) Improvement of tensile shear strength and wood failure percentage of 1C PUR bonded wooden joints at wet stage by means of DMF priming. Eur J Wood Wood Prod 72:343–354CrossRefGoogle Scholar
- Kläusler O, Rehm K, Elstermann F, Niemz P (2014b) Influence of wood machining on tensile shear strength and wood failure percentage of one-component polyurethane bonded wooden joints after wetting. Int Wood Prod J 5:18–26CrossRefGoogle Scholar
- Knorz M, Schmidt M, Torno S, van de Kuilen J-W (2014) Structural bonding of ash (Fraxinus excelsior L.): resistance to delamination and performance in shearing tests. Eur J Wood Wood Prod 72:297–309CrossRefGoogle Scholar
- Knorz M, Neuhaeuser E, Torno S, van de Kuilen J-W (2015) Influence of surface preparation methods on moisture-related performance of structural hardwood–adhesive bonds. Int J Adhes Adhes 57:40–48CrossRefGoogle Scholar
- Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433CrossRefGoogle Scholar
- Konnerth J, Gindl W, Harm M, Müller U (2006) Comparing dry bond strength of spruce and beech wood glued with different adhesives by means of scarf- and lap joint testing method. Holz Roh Werkst 64:269–271CrossRefGoogle Scholar
- Krackler V, Niemz P (2011) Schwierigkeiten und Chancen in der Laubholzverarbeitung: Teil 1: Bestandssituation, Eigenschaften und Verarbeitung von Laubholz am Beispiel der Schweiz [Difficulties and prospects in hardwood processing: part 1: current situation, properties and processing of hardwoods on the example of Switzerland]. Holztechnologie 2:5–11Google Scholar
- Künniger T, Fischer A, Bordeanu NC, Richter K (2006) Water soluble larch extractive: impact on 1P-PUR wood bonds. In: Kurjatko S, Kudela J, Lagana R (eds) 5th UFRO Symposium Wood structures and properties ’06. Technical University Zvolen, Slovakia p 71–76
- Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer M, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
- Luedtke J, Amen C, van Ofen A, Lehringer C (2015) 1C-PUR-bonded hardwoods for engineered wood products: influence of selected processing parameters. Eur J Wood Wood Prod 73:167–178CrossRefGoogle Scholar
- Milad M, Schaich H, Bürgi M, Konold W (2011) Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. For Ecol Manag 261:829–843CrossRefGoogle Scholar
- Niemz P (1993) Physik des Holzes und der Holzwerkstoffe [Physics of wood and wood-based products]. DRW-Verlag, Leinfelden-EchterdingenGoogle Scholar
- Niemz P, Allenspach K (2009) Untersuchungen zum Einfluss von Temperatur und Holzfeuchte auf das Versagensverhalten von ausgewählten Klebstoffen bei Zugscherbeanspruchung [Investigations into the influence of temperature and wood moisture content on the failure behavior of selected adhesives at tensile shear stress]. Bauphysik 31:296–304CrossRefGoogle Scholar
- Ohnesorge D, Henning M, Becker G (2009) Review: bedeutung von Laubholz bei der Brettschichtholzherstellung: Befragung unter BSH-Produzenten in Deutschland, Österreich und der Schweiz [Review: relevance of hardwoods for the production of glued laminated timber: survey among GLT-manufacturers in Germany, Austria and Switzerland]. Holztechnologie 50:47–49Google Scholar
- Piao C, Winandy JE, Shupe TF (2010) From hydrophilicity to hydrophobicity: a critical review: part I. Wettability and surface behavior. Wood Fiber Sci 42:490–510Google Scholar
- Pitzner B, Bernasconi A, Frühwald A (2001) Arbeitsbericht aus dem Institut für Holzphysik und mechanische Technologie des Holzes Nr. 2001/5: Verklebung einheimischer dauerhafter Holzarten zur Sicherung von Marktbereichen im Außenbau [Work report of the institute for wood physics and mechanical technology of wood No 2001/5: bonding of domestic wood species with natural durability to secure market sectors for exterior solutions]. Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg
- Schmidt M, Glos P, Wegener G (2010) Verklebung von Buchenholz für tragende Holzbauteile [Bonding of beech wood for structural wooden components]. Eur J Wood Wood Prod 68:43–57CrossRefGoogle Scholar
- Spathelf P, van der Maaten E, van der Maaten-Theunissen M, Campioli M, Dobrowolska D (2014) Climate change impacts in European forests: the expert views of local observers. Ann For Sci 71:131–137CrossRefGoogle Scholar
- Stoeckel F, Konnerth J, Gindl-Altmutter W (2013) Mechanical properties of adhesives for bonding wood—a review. Int J Adhes Adhes 45:32–41CrossRefGoogle Scholar
- Teischinger A, Fellner J, Eberhardsteiner J (1998) Überlegungen zur Entwicklung eines Probekörpers zur Prüfung der Verleimungsqualität von Dreischicht-Massivholzplatten, Teil 1 [Considerations for the development of a test specimen to assess the bonding quality of three-layered solid wood panels]. Holzforsch Holzverwert 50:99–103Google Scholar
- Wagenführ R (2007) Holzatlas [Atlas of woods], 6th edn. Fachbuchverlag Leipzig, MünchenGoogle Scholar
- Wohlgemuth T (2015) Climate change and tree responses in Central European forests. Ann For Sci 72:285–287CrossRefGoogle Scholar
For further details log on website :
http://link.springer.com/article/10.1007/s00107-016-1087-1
No comments:
Post a Comment