Published Date
, Volume 89, Issue 3, pp 400–405
Sorption and Ion Exchange Processes
Cite this article as:
Tsyganova, S.I., Fetisova, O.Y., Bondarenko, G.N. et al. Russ J Appl Chem (2016) 89: 400. doi:10.1134/S1070427216030095
Author
References
For further details log on website :
http://link.springer.com/article/10.1134/S1070427216030095
, Volume 89, Issue 3, pp 400–405
Sorption and Ion Exchange Processes
- First Online:
- 15 June 2016
DOI: 10.1134/S1070427216030095
Author
Highly porous materials containing zinc oxide were prepared form modified pine wood. The growth dynamics of zinc oxide microcrystallites in the course of carbonization of pine sawdust mixed with ZnCl2 was studied. The hexagonal wurtzite-type ZnO phase is formed at 400°С and is broken down at approximately 800°С. The synthesized composite material has a high specific surface area, up to 1900 m2 g–1. The relationships of the porous structure formation in the composite in relation to the temperature and subsequent treatment with water were revealed. Opening of the porous structure of the composite in the course of carbonization of modified pine sawdust is associated with the formation of crystal-like phases of carbon and ZnO.
References
- Carbon, Elsevier, 2006.Google Scholar
- 2.Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Formation of Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sibirskoe Otdel. Ross. Akad. Nauk, 2002.Google Scholar
- 3.Munoz-Gonzalez, Y., Arriagada-Acuna, R., Soto-Garrido, G., and Garcia-Lovera, R., J. Chem. Technol. Biotechnol., 2009, vol. 84, pp. 39–47.CrossRefGoogle Scholar
- 4.Tsyganova, S.I., Bondarenko, G.N., Korol’kova, I.V., and Kargin, V.F., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, pp. 2131–2136.CrossRefGoogle Scholar
- 5.Derbyshire, F., Jagtoyen, M., Andrews, R., et al., Chemistry and Physics of Carbon, Radovic, L.R., Ed., New York: Dekker, 2001, vol. 27, pp. 1–66.Google Scholar
- 6.Swarnalatha, S., Ganesh Kumar, A., and Sekaran, G., J. Porous Mater., 2009, vol. 16, pp. 239–245.CrossRefGoogle Scholar
- 7.Kolodziejczak-Radzimska, A. and Jesionowski, T., Materials, 2014, vol. 7, pp. 2833–2881.CrossRefGoogle Scholar
- 8.Chang, S.-Y., Yang, N.-H., and Huang, Y.-C., J. Electrochem. Soc., 2009, vol. 156, no. 11, pp. 200–204.CrossRefGoogle Scholar
- 9.Troshyn, A.V., Kovalenko, A.A., Dorofeev, S.G., and Baranov, A.N., Inorg. Mater., 2012, vol. 48, no. 7, pp. 709–715.CrossRefGoogle Scholar
- 10.Dwivedi, C. and Dutta, V., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, vol. 3, pp. 1–8.Google Scholar
- 11.Sui, M., Gong, P., and Gu, X., Front. Optoelectron., 2013, vol. 6, no. 4, pp. 386–412.CrossRefGoogle Scholar
- 12.Kumar, M.A., Jung, S., and Ji, T., Sensors, 2011, vol. 11, pp. 5087–5111.CrossRefGoogle Scholar
- 13.Kuznetsov, B.N., Chesnokov, N.V., Tsyganova, S.I., et al., Russ. J. Appl. Chem., 2015, vol. 88, no. 3, pp. 442–448.CrossRefGoogle Scholar
- 14.Lyanguzov, N.V., Stupko, M.Yu., Nikolaev, A.L., and Kaidashev, E.M., Inzh. Vestn. Dona, 2012, vol. 19, no. 1, pp. 1–4.Google Scholar
For further details log on website :
http://link.springer.com/article/10.1134/S1070427216030095
No comments:
Post a Comment