Author
M. R. De Almeida
M. AumondJr.
C. T. Da Costa
J. Schwambach
C. M. Ruedell
L. R. Correa
A. G. Fett-Neto Email author
Review
First Online:
21 April 2017
DOI : 10.1007/s00468-017-1550-6
Cite this article as:
De Almeida, M.R., Aumond, M., Da Costa, C.T. et al. Trees (2017). doi:10.1007/s00468-017-1550-6
Abstract
Key message
Concerted control of irradiance, temperature, water availability, mineral nutrition and beneficial root-associated microorganisms significantly improves adventitious rooting in eucalypts and poplars, essentially by modulating auxin and carbohydrate metabolism.
Abstract
Eucalyptus and Populus are among the most economically relevant tree genera. Clonal propagation allows fast genetic gain obtained using elite genotypes. Adventitious rooting (AR), a complex and multifactorial process, is often the main limiting factor for tree cloning. Herein, practical and basic approaches to optimize clonal propagation of eucalypts and poplars, focusing on the main environmental control factors affecting it, are explored. Auxin homeostasis and function are central to AR. Irradiance quality and quantity, as well as temperature, can effectively modulate auxin availability, transport and activity. The interaction of carbohydrates, irradiance and temperature is also at the core of AR. Root architecture may be effectively modified by different N sources. Several macro and micronutrients impact on central factors of rhizogenesis, including energy metabolism, gene expression and enzymatic activities regulating auxin and other phytohormonal steady-states driving AR. Appropriate mineral nutrition is often determinant for successful AR and survival. Microbial associations with the root system and the rhizosphere, both bacterial and fungal, can have a role in auxin availability to cuttings, as well as improve disease resistance, nutrition and water relations. Significant cost reduction in clonal propagation systems of eucalypt and poplar are attainable with an adequate control of environmental factors, particularly for donor plants. Future studies should extend the molecular and physiological findings of basic research to the commercial propagation systems, and these, by their turn, should be explored to provide further advances in the basic understanding of this crucial developmental process for human economy.
Keywords
Adventitious rooting Clonal propagation Environment Eucalyptus Populus
Communicated by K. Noguchi.
References
Abu-Abied M, Szwerdszarf D, Mordehaev I, Yaniv Y, Levinkron S, Rubinstein M, RiovJ Ophir R, Sadot E (2014) Gene expression profiling in juvenile and mature cuttings of
Eucalyptus grandis reveals the importance of microtubule remodeling during adventitious root formation. BMC Genom 15:826. doi:
10.1186/1471-2164-15-826 CrossRef Google Scholar
Alcântara GB, Ribas LLF, Higa AR, Ribas KCZ, Koehler HS (2007) Efeito da idade da muda e da estação do ano no enraizamento de miniestacas de
Pinus taeda L. Rev Árvore 31:399–404. doi:
10.1590/S0100-67622007000300005 CrossRef Google Scholar
Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi:
10.1093/jexbot/53.372.1331 PubMed CrossRef Google Scholar
Altamura MM (1996) Root histogenesis in herbaceous and woody explants cultured in vitro. A critical review. Agronomie 16:589–602. doi:
10.1051/agro:19961001 CrossRef Google Scholar
Antonopoulou C, Dimassi K, Therios I, Chatzissavvidis C (2004) The influence of radiation quality on in vitro rooting and nutrient concentrations of peach rootstock. Biol Plant 48:549–553. doi:
10.1023/B:BIOP.0000047151.26284.5f CrossRef Google Scholar
Argus RE, Colmer TD, Grierson PF (2015) Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree
Eucalyptus camaldulensis subsp.
refulgens . Plant Cell Environ 38:1189–1199. doi:
10.1111/pce.12473 PubMed CrossRef Google Scholar
Assis T (2011) Hybrids and minicutting: a powerful combination that has revolutionized the
Eucalyptus clonal forestry. BMC Proc 5(Suppl. 7):I18. doi:
10.1186/1753-6561-5-S7-I18 PubMedCentral CrossRef Google Scholar
Assis TF, Fett-Neto AG, Alfenas AC (2004) Current techniques and prospects for the clonal propagation of hardwoods with emphasis on
Eucalyptus . In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21th century. Research SignPost, New Delhi, pp 303–333
Google Scholar
Azevedo GTOS, De Souza AM, De Azevedo GM, De Cerqueira PHA (2015) Minicutting rooting of eucalyptus with different doses of the hydrophilic polymer incorporated into the substrate. Sci For 43:773–780. doi:
10.18671/scifor.v43n108.3 CrossRef Google Scholar
Baltierra CX, Montenegro G, De Garcia E (2004) Ontogeny of in vitro rooting processes in
Eucalyptus globulus . In Vitro Cell Dev Biol Plant 40:499–503. doi:
10.1079/IVP2004559 CrossRef Google Scholar
Batista AF, Santos GA, Silva LD, Quevedo FF, Assis TF (2015) The use of minitunnels and the effects of seasonality in the clonal propagation of
Eucalyptus in a subtropical environment. Austral For 78:65–72. doi:
10.1080/00049158.2015.1039162 CrossRef Google Scholar
Bellamine J, Penel C, Greppin H, Gaspar T (1998) Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul 26:191–194. doi:
10.1023/A:1006182801823 CrossRef Google Scholar
Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666. doi:
10.1146/annurev-arplant-050213-035645 PubMed CrossRef Google Scholar
Bennett IJ, McDavidan DAJ, McComb JA (2003) The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated
Eucalyptus globulus . Biol Plant 47:355–360. doi:
10.1023/B:BIOP.0000023877.21262.a5 CrossRef Google Scholar
Birnbaum KD (2016) How many ways are there to make a root? Curr Opin Plant Biol 34:61–67. doi:
10.1016/j.pbi.2016.10.001 PubMed CrossRef Google Scholar
Blazich FA (1988) Mineral nutrition and adventitious rooting. In: Davis T, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings, advances in plant sciences series, vol 2. Dioscorides Press, Portland, pp 61–69
Google Scholar
Brondani GE, Baccarin FJB, Ondas HWW, Stape JL, Gonçalves AN, Almeida M (2012) Low temperature, IBA concentrations and optimal time for AR of
Eucalyptus benthamii minicuttings. J For Res Jpn 23:583–592. doi:
10.1007/s11676-012-0298-5 CrossRef Google Scholar
Brondani GE, Baccarin FJB, Bergonci T, Gonçalves AN, Almeida M (2014) Miniestaquia de
Eucalyptus benthamii : efeito do genótipo, AIB, zinco, boro e coletas de brotações. Cerne 20:147–156. doi:
10.1590/S0104-77602014000100018 CrossRef Google Scholar
Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants. Wiley, Hoboken
Google Scholar
Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar
(Populus alba L
. cv. Villafranca ). Chemosphere 67:1117–1126. doi:
10.1016/j.chemosphere.2006.11.039 PubMed CrossRef Google Scholar
Correa LR, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of
Eucalyptus saligna Smith and
Eucalyptus globulus Labill. J Therm Biol 29:315–324. doi:
10.1016/j.jtherbio.2004.05.006 CrossRef Google Scholar
Correa LR, Paim DC, Schwambach J, Fett-Neto AG (2005) Carbohydrates as regulatory factors on the rooting of
Eucalyptus saligna Smith and
Eucalyptus globulus Labill. Plant Growth Regul 45:63–73. doi:
10.1007/s10725-004-6125-z CrossRef Google Scholar
Correa LR, Troleis J, Mastroberti AA, Mariath JEA, Fett-Neto AG (2012) Distinct modes of adventitious rooting in
Arabidopsis thaliana . Plant Biology 14:100–109. doi:
10.1111/j.1438-8677.2011.00468.x Google Scholar
Da Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133. doi:
10.3389/fpls.2013.00133 PubMed PubMedCentral CrossRef Google Scholar
Da Cunha ACMCM, Paiva HN, Leite HG, Barros NF, Leite FP (2009a) Relações entre variáveis climáticas com produção e enraizamento de miniestacas de eucalipto. Revista Árvore 33:195–203. doi:
10.1590/S0100-67622009000200001 CrossRef Google Scholar
Da Cunha ACMCM, de Paiva HN, Xavier A, Otoni WC (2009b) Papel da nutrição mineral na formação de raízes adventícias em plantas lenhosas. Pesq Flor Bras 58:35–47. doi:
10.4336/2009.pfb.58.35 Google Scholar
Da Cunha ACMCM, de Paiva HN, de Barros NF, Leite HG, Palha Leite FP (2009c) Influência do estado nutricional de mini cepas no enraizamento de mini estacas de eucalipto. Rev Árvore 33:607–615. doi:
10.1590/S0100-67622009000400003 CrossRef Google Scholar
Da Cunha ACMCM, de Paiva HN, de Barros NF, Leite HG, Palha Leite FP (2009d) Relação do estado nutricional de mini cepas com o enraizamento de mini estacas de eucalipto. Rev Bras Ci Solo 33:591–599. doi:
10.1590/S0100-06832009000300012 Google Scholar
De Almeida MR, Bastiani D, Gaeta ML, Mariath JEA, De Costa F, Retallick J, Nolan L, Tai HH, Stromvik MV, Fett-Neto AG (2015) Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in
Eucalyptus . Plant Sci 239:155–165. doi:
10.1016/j.plantsci.2015.07.022 PubMed CrossRef Google Scholar
Delker C, Van Zanten M, Quint M (2017) Thermosensing enlightened. Trends Plant Sci 22:185–187. doi:
10.1016/j.tplants.2017.01.007 PubMed CrossRef Google Scholar
Desrochers A, Thomas BR (2003) A comparison of pre-planting treatments on hardwood cuttings of four hybrid poplar clones. New For 26:17–32. doi:
10.1023/A:1024492103150 CrossRef Google Scholar
Díaz K, Valiente C, Martínez M, Castillo M, Sanfuentes E (2009) Root-promoting rhizobacteria in
Eucalyptus globulus cuttings. World J Microb Biotechnol 25(5):867–873. doi:
10.1007/s11274-009-9961-1 CrossRef Google Scholar
Douglas GB, McIvor IR, Lloyd-West CM (2016) Early root development of field-grown poplar: effects of planting material and genotype. New Zeal J For Sci 46:1. doi:
10.1186/s40490-015-0057-4 CrossRef Google Scholar
Druart P (1997) Optimization of culture media for in vitro rooting of
Malus domestica Borkh. Cv Compact Spartan. Biologia Plant 39:67–77. doi:
10.1023/A:1000309023415 CrossRef Google Scholar
Druege U, Kadner R (2008) Response of post-storage carbohydrate levels in pelargonium cuttings to reduced air temperature during rooting and the relationship with leaf senescence and adventitious root formation. Postharvest Biol Technol 47:126–135. doi:
10.1016/j.postharvbio.2007.06.008 CrossRef Google Scholar
FAO (2014) The state of the world’s forest genetic resources. FAO, Rome
Google Scholar
Fege AS, Brown GN (1984) Carbohydrate distribution in dormant
Populus shoots and hardwood cuttings. For Sci 30:999–1010
Google Scholar
Ferreira EVO, Novais RF, Pereira GL, de Barros NF, da Silva IR (2015) Differential behavior of young
Eucalyptus clones in response to nitrogen supply. Rev Bras Ci Solo 39:809–820. doi:
10.1590/01000683rbcs20140560 CrossRef Google Scholar
Fett-Neto AG, Fett JP, Goulart LW, Pasquali G, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in
Eucalyptus saligna Smith and
Eucalyptus globulus Labill. Tree Physiol 21:457–464. doi:
10.1093/treephys/21.7.457 PubMed CrossRef Google Scholar
Fleck J, Schwambach J, Almeida ME, Yendo ACA, De Costa F, Gosmann G, Fett-Neto AG (2009) Immunoadjuvant saponin production in seedlings and micropropagated plants of
Quillaja brasiliensis . In Vitro Cel Dev Biol Pl 45:715–720. doi:
10.1007/s11627-009-9222-x CrossRef Google Scholar
Fogaça CM, Fett-Neto AG (2005) Role of auxin and its modulators in the adventitious rooting of
Eucalyptus s pecies differing in recalcitrance. Plant Growth Regul 45:1–10. doi:
10.1007/s10725-004-6547-7 CrossRef Google Scholar
Franco JA, Banõn S, Vicente MJ, Miralles J, Martiínez-Sanchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotechnol 86:543–556. doi:
10.1080/14620316.2011.11512802 CrossRef Google Scholar
Gandini AMM, Grazziotti PH, Rossi MJ, Grazziotti DCFS, Gandini EMM, Silva EB, Ragonezi C (2015) Growth and nutrition of eucalypt rooted cuttings promoted by ectomycorrhizal fungi in commercial nurseries. R Bras Ci Solo 39:1554–1565. doi:
10.1590/01000683rbcs20150075 CrossRef Google Scholar
Garssen AG, Verhoeven JTA, Soons MB (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshw Biol 59:1052–1063. doi:
10.1111/fwb.12328 PubMed PubMedCentral CrossRef Google Scholar
Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. doi:
10.1016/j.pbi.2009.05.006 PubMed CrossRef Google Scholar
Hartmann HT, Kester DE, Davies FT, Geneve RL (2002) Plant propagation: principles and practices, 7th edn. Prentice Hall, Englewood Cliffs
Google Scholar
Hoad SP, Leakey RRB (1996) Effects of pre-severance light quality on the vegetative propagation of
Eucalyptus grandis W. Hill ex Maiden—cutting morphology, gas exchange and carbohydrate status during rooting. Trees Struct Funct 10:317–324. doi:
10.1007/BF02340778 Google Scholar
Hoffman AP, Adams JP, Nelson A (2016) Effects of light regime and IBA concentration on AR of an eastern cottonwood (Populus deltoides ) clone. In: Schweitzer CJ, Clatterbuck WK, Oswalt CM (eds) Proceedings of the 18th biennial southern silvicultural research conference, e–Gen. Tech. Rep. SRS–212. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 478–485
Kim J-M, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat and cold stresses in plants. Front Plant Sci 6:114. doi:
10.3389/fpls.2015.00114 PubMed PubMedCentral Google Scholar
Kristiansen K, Bredmose N, Nielsen B (2005) Influence of propagation temperature, photosynthetic photon flux density, auxin treatment and cutting position on root formation, axillary bud growth and shoot development in Schlumbergera ‘Russian Dancer’. J Hortic Sci Biotechnol 80:297–302. doi:
10.1080/14620316.2005.11511933 CrossRef Google Scholar
Lee H-J, Ha J-H, Kim S-G, Choi HK, Kim Z-H, Han Y-J, Kim J-II, Oh Y, Fragoso V, Shin K, Hyeon T, Choi H-G, Oh K-H, Baldwin IT, Park C-M (2016) Stem-piped light activates phytochrome B to trigger light responses in
Arabidopsis thaliana roots. Sci Signal 9:106. doi:
10.1126/scisignal.aaf6530 CrossRef Google Scholar
Li J, Yu B, Zhao C, Nowak RS, Zhao Z, Sheng Y, Li J (2012) Physiological and morphological responses of
Tamarix ramosissima and
Populus euphratica to altered groundwater availability. Tree Physiol 33:57–68. doi:
10.1093/treephys/tps120 PubMed CrossRef Google Scholar
Ma X, Zhang C, Zhang B, Yang C, Li S (2016) Identification of genes regulated by histone acetylation during root development in
Populus trichocarpa . BMC Genom 17:96. doi:
10.1186/s12864-016-2407-x CrossRef Google Scholar
Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258. doi:
10.1016/j.pbi.2009.04.003 PubMed CrossRef Google Scholar
Mafia RG, Alfenas AC, Ferreira EM, Binoti DH, Mafia GM, Mounteer AH (2009) Root colonization and interaction among growth promoting rhizobacteria isolates and eucalypts species. Rev Árvore 33(1):1–9. doi:
10.1590/S0100-67622009000100001 CrossRef Google Scholar
Mateja S, Dominik V, Franci S, Gregor O (2007) The effects of a fogging system on the physiological status and rooting capacity of leafy cuttings of woody species. Trees Struct Funct 21:491–496. doi:
10.1007/s00468-006-0121-z CrossRef Google Scholar
Mauriat M, Petterle A, Bellini C, Moritz T (2014) Gibberellins inhibit AR in hybrid aspen and
Arabidopsis by affecting auxin transport. Plant J 78:372–384. doi:
10.1111/tpj.12478 PubMed CrossRef Google Scholar
Melo LA, Xavier A, Takahashi EK, Rosado AM, Paiva HN (2011) Effectiveness of ascorbic acid and PVP in the rooting of clonal mini-cuttings of
Eucalyptus urophylla ×
Eucalyptus grandis . Cerne 17:499–507. doi:
10.1590/S0104-77602011000400008 CrossRef Google Scholar
Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht
CrossRef Google Scholar
Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36. doi:
10.1007/s11104-004-0965-1 CrossRef Google Scholar
Morelli G, Ruberti I (2002) Light and shade in the photocontrol of
Arabidopsis growth. Trends Plant Sci 7:399–404. doi:
10.1016/S1360-1385(02)02314-2 PubMed CrossRef Google Scholar
Müller A, Volmer K, Mishra-Knyrim M, Polle A (2013) Growing poplars for research with and without mycorrhizas. Front Plant Sci 4:332. doi:
10.3389/fpls.2013.00332 PubMed PubMedCentral Google Scholar
Nick P (2013) Control of plant height. In: Nick P (ed) Plant microtubules: potential for biotechnology, plant cell monographs, vol 11. Springer, Berlin, pp 1–23
CrossRef Google Scholar
O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutierrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856. doi:
10.1016/j.molp.2016.05.004 PubMed CrossRef Google Scholar
Oberschelp GPJ, Gonçalves AN (2016) Assessing the effects of basal media on the in vitro propagation and nutritional status of
Eucalyptus dunnii Maiden. In Vitro Cell Dev Biol Plant 52:28–37. doi:
10.1007/s11627-015-9740-7 CrossRef Google Scholar
Osmond KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Ann Rev Plant Biol 58:93–113. doi:
10.1146/annurev.arplant.58.032806.104006 CrossRef Google Scholar
Park Y-S, Bonga JM, Moon H-K (2016) Vegetative propagation of forest trees, National Institute of Forest Science.
http://www.iufro.org/science/divisions/division-2/20000/20900/20902/publications/ . Accessed 5 Jan 2017
Pastur GM, Arena M, Hernandez L, Curvetto N, Eliasco E (2010) Histological events during in vitro rooting of
Nothofagus nervosa (Fagaceae). N Z J Bot 43:61–70. doi:
10.1080/0028825X.2005.9512944 CrossRef Google Scholar
Paz IC, Santin RC, Guimarães AM, Rosa OP, Dias AC, Quecine MC, Azevedo JL, Matsumura AT (2012)
Eucalyptus growth promotion by endophytic
Bacillus spp . Genet Mol Res 11(4):3711–3720. doi:
10.4238/2012.August.17.9 PubMed CrossRef Google Scholar
Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504. doi:
10.1093/mp/ssr034 PubMed CrossRef Google Scholar
Peralta KD, Araya T, Valenzuela S, Sossa K, Martínez M, Peña-Cortés H, Sanfuentes E (2012) Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in
Eucalyptus globulus cuttings. World J Microb Biot 28(5):2003–2014. doi:
10.1007/s11274-012-1003-8 CrossRef Google Scholar
Prado DZ, Dionizio RC, Vianello F, Baratella D, Costal SM, Lima GPP (2015) Quercetin and indole 3-butyric acid (IBA) as rooting inducers in
Eucalyptus grandis ×
E. urophylla . Aust J Crop Sci 9:1057–1063
Google Scholar
Proveniers MCG, Zanten MV (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci 18:59–64. doi:
10.1016/j.tplants.2012.09.002 PubMed CrossRef Google Scholar
Qu CP, Xu ZR, Hu YB, Lu Y, Yang CJ, Sun GY, Liu GJ (2016) RNA-Seq reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments. Front Plant Sci. doi:
10.3389/fpls.2016.00051 Google Scholar
Puri S, Thompson FB (2003) Relationship of water to adventitious rooting in stem cuttings of
Populus species. Agrofor Syst 58:1–9. doi:
10.1023/A:1025494221846 CrossRef Google Scholar
Ragonezzi C, Klimaszewska K, Castro MR, Lima M, De Oliveira P, Zavattieri MA (2010) Adventitious rooting of conifers: influence of physical and chemical factors. Trees Struct Funct 24:975–992. doi:
10.1007/s00468-010-0488-8 CrossRef Google Scholar
Requesens DV, Malone RP, Dix PJ (2014) Expression of a barley peroxidase in transgenic apple (
Malus domestica L.) results in altered growth, xylem formation, and tolerance to heat stress. J Plant Sci 9:58–66. doi:
10.3923/jps.2014.58.66 CrossRef Google Scholar
Ruedell CM, De Almeida MR, Schwambach J, Posenato C, Fett-Neto AG (2013) Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting AR of two
Eucalyptus species of contrasting recalcitrance. Plant Growth Regul 69:235–245. doi:
10.1007/s10725-012-9766-3 CrossRef Google Scholar
Ruedell CM, De Almeida MR, Fett-Neto AG (2015) Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated
Eucalyptus globulus Labill mother plants. Plant Physiol Bioch 97:11–19. doi:
10.1016/j.plaphy.2015.09.005 CrossRef Google Scholar
Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286. doi:
10.1016/j.pbi.2013.03.013 PubMed CrossRef Google Scholar
Schwambach J, Fadanelli C, Fett-Neto AG (2005) Mineral nutrition and adventitious rooting in microcuttings of
Eucalyptus globulus . Tree Physiol 25:487–494. doi:
10.1093/treephys/25.4.487 PubMed CrossRef Google Scholar
Schwambach J, Ruedell CM, Almeida MR, Penchel RP, Araújo EF, Fett-Neto AG (2008) AR of
Eucalyptus globulus ×
maidenii mini-cuttings derived from mini-stumps grown in sand bed and intermittent flooding trays: a comparative study. New For 36:261–271. doi:
10.1007/s11056-008-9099-2 CrossRef Google Scholar
Schwambach J, Ruedell CM, de Almeida MR, Fett-Neto AG (2015) Nitrogen sources and adventitious root development in
Eucalyptus globulus micro cuttings. J Plant Nutr 38:1628–1638. doi:
10.1080/01904167.2014.983125 CrossRef Google Scholar
Shibuya T, Tsukuda S, Tokuda A, Shiozaki S, Endo R, Kitaya Y (2013) Effects of warming basal ends of Carolina poplar (
Populus ×
canadensis Moench.) softwood cuttings at controlled low-air-temperature on their root growth and leaf damage after planting. J For Res 18:279–284. doi:
10.1007/s10310-012-0343-4 CrossRef Google Scholar
Smith NG, Wareing PF (1972) Rooting of hardwood cuttings in relation to bud dormancy and the auxin content of the excised stems. New Phytol 71:63–80. doi:
10.1111/j.1469-8137.1972.tb04811.x CrossRef Google Scholar
Stape JL, Gonçalves JLM, Gonçalves AN (2001) Relationships between nursery practices and field performance for
Eucalyptus plantations in Brazil. New For 22:19–41. doi:
10.1023/A:1012271616115 CrossRef Google Scholar
Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617. doi:
10.1104/pp.15.01360 PubMed CrossRef Google Scholar
Stenvall N, Haapala T, Aarlahti S, Pulkkinen P (2005) The effect of soil temperature and light on sprouting and rooting of root cuttings of hybrid aspen clones. Can J For Res 35:2671–2678. doi:
10.1139/x05-183 CrossRef Google Scholar
Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36(5):909–919. doi:
10.1111/pce.12036 PubMed CrossRef Google Scholar
Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8(4):179–187. doi:
10.1016/S1360-1385(03)00047-5 PubMed CrossRef Google Scholar
Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microb 75(3):748–757. doi:
10.1128/AEM.02239-08 CrossRef Google Scholar
Teixeira DA, Alfenas AC, Mafia RG, Ferreira EM, Siqueira LD, Maffia LA, Mounteer AH (2007) Rhizobacterial promotion of eucalypt rooting and growth. Braz J Microbiol 38(1):118–123. doi:
10.1590/S1517-83822007000100025 CrossRef Google Scholar
Trevizam R, Brondani GE, Nery FU, Gonçalves NA, De Almeida M (2011) Caracterização morfológica de calos de
Eucalyptus urophylla S. T. Blake sob concentrações de boro e cálcio. Cerne 17:215–222. doi:
10.1590/S0104-77602011000200009 CrossRef Google Scholar
Trindade H, Pais MS (1997) In vitro studies on
Eucalyptus globulus rooting ability. In Vitro Cell Dev Biol Plant 33:1–5. doi:
10.1007/s11627-997-0032-8 CrossRef Google Scholar
Truax B, Gagnon D, Fortier J, Lambert F (2014) Biomass and volume yield in mature hybrid poplar plantations on temperate abandoned farmland. Forests 5:3107–3130. doi:
10.3390/f5123107 CrossRef Google Scholar
Trueman SJ, Mcmahon TV, Bristow M (2013a) Production of cuttings in response to stock plant temperature in the subtropical eucalypts,
Corymbia citriodora and
Eucalyptus dunnii . New For 44:265–279. doi:
10.1007/s11056-012-9315-y CrossRef Google Scholar
Trueman SJ, McMahon TV, Bristow M (2013b) Production of
Eucalyptus cloeziana cuttings in response to stock plant temperature. J Trop For Sci 25:60–69.
https://www.frim.gov.my/v1/jtfsonline/jtfs/v25n1/60-69.pdf . Accessed 5 Jan 2017
Vance ED, Loehle C, Wigley TB, Weatherford P (2014) Scientific basis for sustainable management of
Eucalyptus and
Populus as short-rotation woody crops in the US. Forests 5:901–918. doi:
10.3390/f5050901 CrossRef Google Scholar
Vasconcelos E, Ribeiro HM, Ramos A, Coutinho J (2007) Influence of nitrogen and potassium on
Eucalyptus globulus Labill. mother plants. Rev de Ciências Agrárias 30:87–97
Google Scholar
Wang L, Zhao C, Li Z, Liu Z, Wang J (2015) Root plasticity of
Populus euphratica seedlings in response to different water table depths and contrasting sediment types. PLoS One. doi:
10.1371/journal.pone.0118691 Google Scholar
Weaver LM, Herrmann KM (1997) Dynamics of the shikimate pathway in plants. Trends Plant Sci 2:346–351. doi:
10.1016/S1360-1385(97)84622-5 CrossRef Google Scholar
Wendling I, Brondani GE, Dutra LF, Hansel FA (2010) Minicutting technique: a new ex vitro method for clonal propagation of sweetgum. New For 39:343–353. doi:
10.1007/s11056-009-9175-2 CrossRef Google Scholar
Woodward AJ, Bennett IJ, Pusswonge S (2006) The effect of nitrogen source and concentration, medium pH and buffering on in vitro shoot growth and rooting in
Eucalyptus marginata . Sci Hortic Amst 110:208–213. doi:
10.1016/j.scienta.2006.07.005 CrossRef Google Scholar
Zalesny RS, Bauer EO, Riemenschneider DE (2004) Use of belowground growing degree days to predict rooting of dormant hardwood cuttings of
Populus . Silvae Genet 53:154–160
Google Scholar
Zalesny RS, Hall RB, Bauer EO, Rienenschneider DE (2005) Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of
Populus . Silvae Genet 54:47–58
Google Scholar
Zavattieri MA, Ragonezi C, Klimaszewska K (2016) Adventitious rooting of conifers: influence of biological factors. Trees Struct Funct 4:1–12. doi:
10.1007/s00468-010-0488-8 Google Scholar
Zhao X, Zheng H, Li S, Yang C, Jiang J, Liu G (2014) The rooting of poplar cuttings: a review. New For 45:21–34. doi:
10.1007/s11056-013-9389-1 CrossRef Google Scholar
Zhen S, Van Iersel MW (2017) Far-red light is needed for efficient photochemistry and photosynthesis. J Plant Physiol 209:115–122. doi:
10.1016/j.jplph.2016.12.004 PubMed CrossRef Google Scholar
© Springer-Verlag Berlin Heidelberg 2017
For further details log on website :
https://link.springer.com/article/10.1007/s00468-017-1550-6
No comments:
Post a Comment