Published Date
Author
Abstract
The objective of this study was to evaluate the effects of starch source and amylose content on the expansion ratio, density, and texture of expanded extrudates, as well as to investigate the structural and molecular changes that occur in starch granules as a function of extrusion. The starches employed were rice starches (8%, 20%, and 32% amylose), carioca bean starch (35% amylose), and Hylon V® corn starch (55% amylose). The extrudates from rice starches containing 20% and 32% amylose exhibited the highest expansion ratio, while, extrudates from Hylon V®corn starch containing 55% amylose exhibited the lowest expansion ratio. The hardness values of the extrudates with 55% amylose were twice those of the extrudates with 20%, 32%, and 35% amylose. An additional finding was that although the amylopectin promoted the expansion of the gelatinized starch matrix, it failed to strengthen and sustain the walls of the extrudate bubbles during expansion.
For further details log on website :
http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.13545/abstract;jsessionid=2947692186BA3D6343FE0379C8D2DB3D.f04t03
Author
Abstract
The objective of this study was to evaluate the effects of starch source and amylose content on the expansion ratio, density, and texture of expanded extrudates, as well as to investigate the structural and molecular changes that occur in starch granules as a function of extrusion. The starches employed were rice starches (8%, 20%, and 32% amylose), carioca bean starch (35% amylose), and Hylon V® corn starch (55% amylose). The extrudates from rice starches containing 20% and 32% amylose exhibited the highest expansion ratio, while, extrudates from Hylon V®corn starch containing 55% amylose exhibited the lowest expansion ratio. The hardness values of the extrudates with 55% amylose were twice those of the extrudates with 20%, 32%, and 35% amylose. An additional finding was that although the amylopectin promoted the expansion of the gelatinized starch matrix, it failed to strengthen and sustain the walls of the extrudate bubbles during expansion.
For further details log on website :
http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.13545/abstract;jsessionid=2947692186BA3D6343FE0379C8D2DB3D.f04t03
No comments:
Post a Comment