Author
Original Article
First Online:
26 April 2017
DOI : 10.1007/s00468-017-1549-z
Cite this article as:
Krejza, J., Světlík, J. & Bednář, P. Trees (2017). doi:10.1007/s00468-017-1549-z
Abstract
Key message
Complex overview of biomass structure for oak and ash tree species and wide range of allometric relationships for predicting above- and below-ground biomass components.
Abstract
Due to changing climate conditions, trends in the proportion of the area of major tree species in Europe will tend to show a greater share of lowland tree species composition. The estimation of tree biomass and its components is needed to determine the amount of carbon held in trees and to plan forest resources. This study presents the biomass functions applicable for ash (Fraxinus excelsior L.) and oak (Quercus robur L.) trees growing in floodplain forest of the Czech Republic, which could subsequently be grouped into more efficient generic model for the particular tree species in the Central Europe. It is based on a detailed destructive analysis of six ash and seven oak trees. The range of the basic predictors of sampled trees included: diameter at breast height (DBH) from 21.3 to 69.7 cm, height (H ) from 21.0 to 33.9 m, crown length (CL) from 7.6 to 16.3 m and width of crown (CW) from 3.8 to 14.3 m. The allometric relationships were constructed to derive leaf- (LB), shoot- (Bs B), branch- (BB), stem- (SB) and root- (RB) biomass components and to derive aboveground- (TAB), which contains SB and BB, and total biomass (TB) comprising all biomass components. Equations for estimating stem volume were developed, which are required for forest management and it is necessary for planning the availability of commercially valuable wood. Finally, biomass expansion factors (BEFs) converting stem volume into biomass components were constructed. The BEFs were slightly positively linear DBH dependent for BsB, BB, TAB and TB, whereas for LB, SB and RB they were shown to be DBH independent across the diameter distribution of the sampled trees.
Keywords
Floodplain forest Root biomass Leaf biomass Branch biomass Shoot biomass Allometry Stem volume Biomass expansion factor
Communicated by R. Matyssek.
References
Albrektson A, Valinger E, Jonson C (1984) Några funktioner för bestämning av tallars biomassa i södra Norrland. Sveriges Skogsvårdsförbunds Tidskrift 82(6):5–12
Google Scholar
Avery TE, Burkhart H (2002) Forest measurements. McGraw-Hill Companies Inc, New York. ISBN 10: 0073661767
Bartelink H (1997) Allometric relationships for biomass and beech leaf area (
Fagus sylvatica L.). Ann For Sci 62:39–50
CrossRef Google Scholar
Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple and beech seedlings growing under a natural light gradient. Can J For Res 28:1007–1015
CrossRef Google Scholar
Brandini P, Tabacchi G (1996) Biomass and volume equations for holm oak and strawberry-tree in coppice stands of Southern Sardinia. ISAFA Communicazioni di Ricerca 96(1):59–69
Google Scholar
Briggs EF, Cunia T (1982) Effect of cluster sampling in biomass tables construction: linear regression models. Can J For Res 12(2):255–263
CrossRef Google Scholar
Brown S, Schreder P, Kern J (1999) Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag 123(1999):81–90
CrossRef Google Scholar
Bunce RGH (1968) Biomass and production of trees in a mixed deciduous woodland. I. Girth and height as parameters for the estimation of tree dry weight. J Ecol 56:759–775
CrossRef Google Scholar
Chen W, Zhang W, Cihlar J, Bauhus J, Price DT (2004) Estimating fine root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant Soil 265:31–46
CrossRef Google Scholar
Chroust L (1985) Above-ground biomass of young pine forests (
Pinus sylvestris ) and its determination. Communicationes Instituti Forestalis Cechosloveniae 14:127–145
Google Scholar
Cienciala E, Černý M, Alptauer J, Exnerová Z (2005) Biomass functions applicable to European beech. J For Sci 51(4):147–154
Google Scholar
Cienciala E, Černý M, Tatatinov F, Apltauer J, Exnerová Z (2006) Biomass functions applicable to Scots pine. Trees Struct Funct 20:483–495
CrossRef Google Scholar
Cienciala E, Apltauer J, Exnerová Z, Tatarinov F (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54:109–120
Google Scholar
Curt T, Coll L, Prévosto B, Balandier P, Kunstler G (2005) Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition. Ann For Sci 62:51–60
CrossRef Google Scholar
Drexhage M, Chauviere M, Colin F, Nielsen CCN (1999) Development of structural root architecture and allometry of
Quercus petraea . Can J For Res 29:600–608. doi:
10.1139/x99-027 CrossRef Google Scholar
FOREST EUROPE (2015) State of Europe’s Forests 2015. Ministerial conference on the protection of forests in Europe.
http://www.foresteurope.org/docs/fullsoef2015.pdf . Accessed 20 Jan 2017
Gschwantner T, Schadauer K (2006) Branch biomass functions for broadleaved tree species in Austria. Aust J For Sci 123:17–34
Google Scholar
Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in economic value of European forest land. Nat Clim Change 3:203–207. doi:
10.1038/nclimate1687 CrossRef Google Scholar
Hochbichler E (2002) Vorläufige Ergebnisse von Biomasseninventuren in Buchen- und Mittelwaldbeständen. In: Dietrich HP, Raspe S, Preushsler T (eds) Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen. Forstliche Forschungsberichte, Heft 186. LWF, München, Germany, pp 37–46
Google Scholar
Hochbichler E, Bellos P, Lick E (2006) Biomass functions for estimating needle and branch biomass of spruce (
Picea abies ) and Scots pine (
Pinus sylvestris ) and branch biomass of beech (
Fagus sylvatica ) and oak (
Quercus robur and
petraea ). Aust J For Sci 123:35–46
Google Scholar
Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of
Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361
CrossRef PubMed Google Scholar
IPCC (2006) IPCC Guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan
Google Scholar
Jarčuška B, Barna M (2011) Plasticity in above-ground biomass allocation in
Fagus sylvatica L. saplings in response to light availability. Ann For Res 54(2):151–160
Google Scholar
Johansson T (1999) Biomass production of Norway spruce (
Picea abies (L.) Karst.) growing on abandoned farmland. Silva Fennica 33(4):261–280
CrossRef Google Scholar
Joosten R, Schumacher J, Wirth C, Schulte A (2004) Evaluating tree carbon predictions for beech (
Fagus sylvatica L.) in western Germany. For Ecol Manag 189:87–96
CrossRef Google Scholar
Kauppi PE, Mielikainen K, Kusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74
CrossRef PubMed Google Scholar
Kint V, Hein S, Campioli M, Muys B (2010) Modelling self-pruning and branch attributes for young
Quercus robus L. and
Fagus sylvatica L. trees. For Ecol Manag 260(11):2023–2034
CrossRef Google Scholar
Konôpka B, Pajtík J, Marušák R (2015) Biomass allocation influenced by canopy closure in a young spruce stand. J For Sci 61(2):62–71
Google Scholar
Korsmo H (1995) Weight equations for determining biomass fractions of young hardwoods from natural regenerated stand. Scand J For Res 10:333–346
CrossRef Google Scholar
Krejza J, Pokorný R, Marková I (2013) Is allometry for aboveground organ’s mass estimation in young Norway spruce stands affected by different type of thinning? Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61(6):1755–1761
CrossRef Google Scholar
Krejza J, Světlík J, Pokorný R (2015) Spatially explicit basal area growth of Norway spruce. Trees Struct Funct 29(10):1545–1558. ISSN: 0931-1890. doi:
10.1007/s00468-015-1236-x
Kunstler G, Curt T, Bouchaud M, Lepart J (2005) Growth, mortality, and the morphological response of European beech and downy oak along a light gradient in a sub-Mediterranean forest. Can J For Res 35:1657–1668
CrossRef Google Scholar
Laitat E, Lebègue C, Perrin D, Pissart G (2003) Séquestration du carbone par les forêts selon l’affectation des terres. Ministre de l’Agriculture et de la Ruralité, Ministère de la Région Wallonne, Division de la Nature et des Forêts, FuSAGxp
Landsberg J, Sands P (2011) Physiological ecology of forest production: principles, processes and models, vol 4. Elsevier, Academic Press, London. ISBN:978-0-12-374460-9
Ledermann T, Neumann M (2006) Biomass equations from data of old long-term experimental plots. Aust J For Sci 123:47–64
Google Scholar
Lee DH (2001) Relationship between above- and below-ground biomass for Norway spruce (
Picea abies ): estimating root system biomass from breast height diameter. J Korean For Soc 90(3):338–345
Google Scholar
Lehtonen A (2005) Estimating foliage biomass in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Tree Physiol 25:803–811
CrossRef PubMed Google Scholar
Lehtonen A, Makipaa R, Heikkinen J, Sievanen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211–224
CrossRef Google Scholar
Lehtonen A, Cienciala E, Tatarinov F, Mäkipää R (2007) Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Ann For Sci 64:133–140
CrossRef Google Scholar
Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Communicationes Instituti Forestalis Fenniae 84(5):1–87
Google Scholar
Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Department of Forest Surveying, Swedish University of Agricultural Sciences, Umeå, Report 45, 73s
Militký J, Meloun M (1993) Use of the mean quadratic error of prediction for the construction of biased linear models. Anal Chim Acta 277(193):267–271
CrossRef Google Scholar
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. doi:
10.13031/2013.23153 CrossRef Google Scholar
Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in Central Europe. For Ecol Manag 171:275–296
CrossRef Google Scholar
Muukkonen P, Mäkipää R (2006) Biomass equations for European trees: addendum. Silva Fennica 40(4):763–773
CrossRef Google Scholar
Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23:69–81
CrossRef Google Scholar
Pajtík J, Konôpka B, Lukac M (2011) Individual biomass factors for beech, oak, and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees 25:277–288
CrossRef Google Scholar
Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (
Fraxinus excelsior ) dieback—a conservation biology challenge. Biol Conserv 158(2013):37–49
CrossRef Google Scholar
Pelíšek J (1975) The dynamics of ecological soil properties in floodplain forest of southern Moravia (Lednice). In: Anonymous (ed) Funkce, produktivita a struktura ekosystému lužního lesa. Vysoká škola zemědělská v Brně, Brno, In Czech, pp 25–40
Petrotam AM, Von Lüpke B, Petritan IC (2009) Influence of light availability on growth, leaf morphology and plant architecture of beech (
Fagus sylvatica ), maple (
Acer pseudoplatanus ) and ash (
Fraxinus excelsior ) saplings. Eur J For Res 128:61–74
CrossRef Google Scholar
Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and biomass allometric equations. From field measurement to prediction. FAO and CIRAD, Rome, Italy, and Montpellier, France.
http://www.fao.org/docrep/018/i3058e/i3058e.pdf . Accessed 20 Jan 2017
Pokorný R, Tomášková I (2007) Allometric relationships for surface area and dry mass of young Norway spruce aboveground organs. J For Sci 53(12):548–554
Google Scholar
QCExpert 3.3 (2015) TriloByte Statistical Software, Staré Hradiště (CZ), trilobyte.cz
Quitt E (1971) Klimatické oblasti Československa: climatic regions of Czechoslovakia. Geografický ústav ČSAV, 1971. Studia Geographica, Brno
Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ (2015) Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest? Ecosphere 6(3):38. doi:
10.1890/ES14-00251.1 CrossRef Google Scholar
Šály R (1978) Poda, zaklad lesnej produkcie. Príroda, Bratislava
Google Scholar
Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43:424–434
Google Scholar
Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large scale forest biomass estimation. Eur J For Res 126(2):197–207
CrossRef Google Scholar
Tatarinov F, Urban J, Čermák J (2008) The application of “clump technique” for root system studies of
Quercus robur and
Fraxinus excelsior . For Ecol Manag 255:495–505
CrossRef Google Scholar
Thuiller W, Albert C, Araújo M, Berry P, Cabeza M, Guisan A, Hickler T, Midgley G, Paterson J, Schurr F, Sykes M, Zimmermann E (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152
CrossRef Google Scholar
Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo M (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534
CrossRef PubMed Google Scholar
UNFCCC (United Nations Framework Convention on Climate Change) (1997) Kyoto Protocol.
http://unfccc.int/kyoto_protocol/items/2830.php . Accessed 1 Dec 2016
Van Hees AFM (1997) Growth and morphology of pedunculate oak (
Quercus pedunculata ) and beech (
Fagus sylvatica ) seedlings in relation to shading and drought. Ann Sci For 54:9–18
CrossRef Google Scholar
Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (
Pinus sylvestris L.). Trees 10:231–238
Google Scholar
Vyskot M (1976) Tree story biomass in lowland forests in South Moravia. Rozpravy CSAV 86(10) Academia, Praha
Google Scholar
Wirth C, Schumacher J, Schulze ED (2004) Generic biomass functions for Norway spruce in Central Europe a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139
CrossRef PubMed Google Scholar
Yuste JC, Konôpka B, Janssens I, Coenen K, Xiao CW, Ceulemans R (2005) Contrasting net primary productivity and carbon distribution between neighbouring stands of
Quercus robur and
Pinus sylvestris . Tree Phyiol 25:701–712
CrossRef Google Scholar
Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fennica Monogr 4:63
Google Scholar
Zlatnik A (1976) Lesnicka Fytocenologie. SZN Praha
© Springer-Verlag Berlin Heidelberg 2017
For further details log on website :
https://link.springer.com/article/10.1007/s00468-017-1549-z
No comments:
Post a Comment