Published Date
April 2017 , Volume 31, Issue 2 , pp 587–606
Author
Aylin Güney Email author
Manfred Küppers
Cyrille Rathgeber
Melahat Şahin
Reiner Zimmermann
Original Article
DOI : 10.1007/s00468-016-1492-4
Cite this article as:
Güney, A., Küppers, M., Rathgeber, C. et al. Trees (2017) 31: 587. doi:10.1007/s00468-016-1492-4
Abstract
Key message
Onset of cambial activity in Lebanon Cedar is triggered by stem temperature but may be delayed by high site-LAI. Higher growth rates and tree-ring widths were observed under better water and light availability. Daily stem radius variations were sensitive to humid conditions.
Abstract
Studies on intra-annual dynamics of stem growth provide useful information on tree growth responses to environmental conditions, but are fragmentary for species from Mediterranean Mountain ranges. Lebanon Cedar is a frost and drought tolerant species, growing between 1000 and 2000 m a.s.l in the Taurus Mountains (Turkey). Foresters see it as a potential candidate for plantation in Central European forests facing global warming. To describe the natural variability of Lebanon Cedar growth dynamics, five study sites were established: four along an altitudinal gradient at a natural site in SW-Turkey and one in a Lebanon Cedar plantation in Central Germany. Two stem growth monitoring methods were used: (1) bi-weekly microcoring during 2013 growing season and (2) point dendrometers during 2013 and 2014. Histological analyses were used to calibrate dendrometer records and to describe cambium phenology. Seasonal dynamics of xylem and stem radial increments were modelled by Gompertz functions. Onset of cambial activity was observed 1–2 weeks after stem temperatures reached a threshold of 5 °C but could be delayed by high site-LAI. Cedars growing under better light and water availability showed higher growth rates and wider tree rings. Daily stem radius variations (dSRV) extracted from dendrometer records were negatively related to vapor pressure deficit and global radiation; multiple linear regressions explained 30–52% of dSRV variance being dominated by relative humidity, precipitation, and soil water content. Best growth performance was observed at the German site, likely for a continuous water supply throughout the year, underlining the potential of Lebanon Cedar for Central European Forestry.
Keywords
Lebanon Cedar Point dendrometer Microcoring Cambial activity Tree-ring formation Microclimate
Abbreviations
A
Final annual tree-ring width
bE
Onset of the enlarging phase
bL
Onset of the cell-wall lignification phase
bM
Onset of the mature phase
CA
Cambial activity
cE
Cessation of the enlarging phase
cL
Cessation of the cell-wall lignification phase
CRF
Cedar Research Forest
d
Time required for major period of tree-ring formation
dE
Duration of the enlarging phase
dL
Duration of the lignification phase
DOY
Day of year
dSRV
Daily stem radius variation
dX
Duration of xylogenesis
EBG
Ecological Botanical Gardens
gR
Global radiation
LAI
Leaf area index
MAT
Mean annual air temperature
Pp
Precipitation
r
Mean tree-ring formation rate (during growth period)
rH
Relative air humidity
RSI
Radial stem increase
ST
Stem temperature
SWC
Soil water content
Ta
Air temperature (Tamean : daily mean, Tamax : daily maximum, and Tamin : daily minimum)
TAP
Total annual precipitation
t p
Time of inflection point
Ts
Soil temperature
VPD
Vapor pressure deficit
Communicated by E. Liang.
References
Akgül E, Yılmaz A (1986) Relationship between growth characteristics of Taurus cedar (Cedrus libani A. Rich) and the ecological properties of reforestation areas outside the natural stands. Ormancılık Araştırma Enstitüsü Müdürlüğü Teknik Bülten Serisi No 188
Akkemik Ü (2003) Tree rings of
Cedrus libani at the northern boundary of its natural distribution. IAWA J 24:63–73
CrossRef Google Scholar
Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845. doi:
10.1093/jxb/err309 CrossRef PubMed Google Scholar
Basaran MA et al (2008) Determining the actual state of Elmali cedar research forest by GIS based digitl maps (in Turkish with english abstract). Çevre ve Orman Bakanlığı Yayın 353:1–331
Google Scholar
Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660
CrossRef PubMed Google Scholar
Boydak M (2007) Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In: Leone V. (ed.), Lovreglio R. (ed.). Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. Bari: CIHEAM, 2007. pp 33–42 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 75)
Brooks JR, Jiang L, Ozçelik R (2008) Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For Ecol Manage 256:147–151
CrossRef Google Scholar
Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of
Pinus uncinata and
Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30:1–10
CrossRef Google Scholar
Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi:
10.1111/j.1469-8137.2009.03073.x CrossRef PubMed Google Scholar
Carus S, Catal Y (2010) Growth response of Lebanon cedar (
Cedrus libani ) plantations to thinning intensity in Western Turkey. J Environ Biol 31:609–614
PubMed Google Scholar
Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E (2016) Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell Environ 39:233–244
CrossRef Google Scholar
Cheng C, Gordon IL (2000) The Richards function and quantitative analysis of germination and dormancy in meadowfoam (
Limnanthes alba ). Seed Sci Res 10:265–277
Google Scholar
Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533
CrossRef PubMed Google Scholar
Cocozza C, Palombo C, Tognetti R, La Porta N, Anichini M, Giovannelli A, Emiliani G (2016) Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in
Picea abies at two different altitudes. Tree Physiol 00:1–15
Google Scholar
Cuny HE, Rathgeber CB, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625
CrossRef PubMed Google Scholar
Cuny HE, Rathgeber CB, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241
CrossRef PubMed Google Scholar
de Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in
Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404
CrossRef Google Scholar
de Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011) Cambial activity, wood formation and sapling survival of
Pinus halepensis exposed to different irrigation regimes. For Ecol Manage 262:1630–1638
CrossRef Google Scholar
del Castillo EM, Longares LA, Gričar J, Prislan P, Gil-Pelegrín E, Čufar K, De Luis M (2016) Living on the edge: contrasted wood-formation dynamics in
Fagus sylvatica and
Pinus sylvestris under Mediterranean conditions. Front Plant Sci 7:1–10
Google Scholar
Deslauriers A, Morin H, Begin Y (2003a) Cellular phenology of annual ring formation of
Abies balsameain the Quebec boreal forest (Canada). Can J For Res 33:190–200. doi:
10.1139/x02-178 CrossRef Google Scholar
Deslauriers A, Morin H, Urbinati C, Carrer M (2003b) Daily weather response of balsam fir (
Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees 17:477–484. doi:
10.1007/s00468-003-0260-4 CrossRef Google Scholar
Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124. doi:
10.1016/j.dendro.2007.05.003 CrossRef Google Scholar
Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871
CrossRef PubMed Google Scholar
Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated
Eucalyptus globulus and
E. nitens in relation to climate. Trees 14:102–111
Google Scholar
Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27:159–172. doi:
10.1016/j.dendro.2009.06.008 CrossRef Google Scholar
Ducci F, Fusaro E, Lucci S, Ricciotti L (2007) Strategies for finalizing Conifers experimental tests to the production of improved reproductive materials. In: Proceedings of the Inter. Workshop MEDPINE3 “Conservation, Regeneration and restauration of Mediterranean Pines and thei Ecosystems” (Valenzano-BA, 2005) Options médit., Serie A, 2007, vol 75, pp 99–104
Foken T (2007) Das Klima von Bayreuth. Standort 31:150–152. doi:
10.1007/s00548-007-0045-x CrossRef Google Scholar
Gricar J, Zupancic M, Cufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (
Picea abies ). Ann Bot 97:943–951. doi:
10.1093/aob/mcl050 CrossRef PubMed PubMedCentral Google Scholar
Güney A, Kerr D, Sökücü A, Zimmermann R, Küppers M (2015) Cambial activity and xylogenesis in stems of
Cedrus libani A. Rich at different altitudes. Bot Stud. doi:
10.1186/s40529-015-0100-z Google Scholar
Herzog KM, Häsler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101
CrossRef Google Scholar
Huang JG, Bergeron Y, Zhai L, Denneler B (2011) Variation in intra-annual radial growth (xylem formation) of
Picea mariana (Pinaceae) along a latitudinal gradient in western Quebec, Canada. Am J Bot 98:792–800. doi:
10.3732/ajb.1000074 CrossRef PubMed Google Scholar
Huber G, Storz C (2014) Zedern und Riesenlebensbaum—Welche Herkünfte sind bei uns geeignet? LWF-Wissen 74:63–71
Google Scholar
Kavgacı A, Başaran S, Başaran M (2010) Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144:271–287
CrossRef Google Scholar
Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032
CrossRef PubMed Google Scholar
Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. In: Annales des Sciences Forestières, 1998, vol 1–2. EDP Sciences, pp 125–139
Linares JC, Camarero JJ, Carreira JA (2009) Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol 29:1525–1536
CrossRef PubMed Google Scholar
Liphschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA J 7:145–153
CrossRef Google Scholar
Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant, Cell Environ 33:1721–1730. doi:
10.1111/j.1365-3040.2010.02176.x CrossRef Google Scholar
Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968
CrossRef PubMed Google Scholar
Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J Forest Res 127:235–245. doi:
10.1007/s10342-007-0199-x CrossRef Google Scholar
Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G (2015) Cedrus libani: a promising tree species for Central European forestry facing climate change? Eur J Forest Res 134(6):1005–1017
CrossRef Google Scholar
Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (
Fagus sylvatica ,
Quercus petraea and
Pinus sylvestris ) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045
CrossRef PubMed Google Scholar
Moser L, Fonti P, Buntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi:
10.1093/treephys/tpp108 CrossRef PubMed Google Scholar
Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of
Pinus sylvestris (L.) exposed to drought. Trees 24:887–898
CrossRef PubMed PubMedCentral Google Scholar
Oberhuber W, Gruber A, Kofler W, Swidrak I (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J Forest Res 133:467–479
CrossRef Google Scholar
Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366. doi:
10.1111/j.1469-8137.2012.04273.x CrossRef PubMed Google Scholar
Rathgeber CB, Rossi S, Bontemps JD (2011a) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438. doi:
10.1093/aob/mcr168 CrossRef PubMed PubMedCentral Google Scholar
Rathgeber CBK, Longuetaud F, Mothe F, Cuny H, Le Moguédec G (2011b) Phenology of wood formation: data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia 29:139–149. doi:
10.1016/j.dendro.2011.01.004 CrossRef Google Scholar
Ren P, Rossi S, Gricar J, Liang E, Cufar K (2015) Is precipitation a trigger for the onset of xylogenesis in
Juniperus przewalskii on the north-eastern Tibetan Plateau? Ann Bot 115:629–639
CrossRef PubMed PubMedCentral Google Scholar
Risse M (2013) Holzeigenschaften der Libanonzeder (Cedrus libani A. Rich) aus dem Ökologisch-Botanischen Garten Bayreuth, Master thesis, Technical University of Munich, Faculty of Forest Science and Resource Management, Munich
Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97
CrossRef Google Scholar
Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394
CrossRef Google Scholar
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006c) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310. doi:
10.1111/j.1469-8137.2006.01660.x CrossRef PubMed Google Scholar
Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12. doi:
10.1007/s00442-006-0625-7 CrossRef PubMed Google Scholar
Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008a) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208. doi:
10.1111/j.1469-8137.2007.02235.x PubMed Google Scholar
Rossi S et al (2008b) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707. doi:
10.1111/j.1466-8238.2008.00417.x CrossRef Google Scholar
Senitza E (1989) Waldbauliche Grundlagen der Libanonzeder (Cedrus libani A.Rich) im Westtaurus/Türkei. Dissertation der Universität für Bodenkultur in Wien 34, Wien
Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343
CrossRef PubMed Google Scholar
Stocker TF (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, northwestern Quebec. Environ Monit Assess 67:141–160
CrossRef PubMed Google Scholar
Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of
Abies balsamea and
Picea mariana . Ann Bot 102:667–674. doi:
10.1093/aob/mcn146 CrossRef PubMed PubMedCentral Google Scholar
Turkish State Meteorology Service (2005) Ortalama ve Ekstrem Kıymetler. Meteoroloji Bültenleri, Turkish State Meteorology Service, Ankara
Google Scholar
Urrutia-Jalabert R, Rossi S, Deslauriers A, Malhi Y, Lara A (2015) Environmental correlates of stem radius change in the endangered
Fitzroya cupressoides forests of southern Chile. Agric For Meteorol 200:209–221
CrossRef Google Scholar
Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2013) Seasonal and daily cycles of stem radial variation of
Pinus pinaster in a drought-prone environment. Agric For Meteorol 180:173–181
CrossRef Google Scholar
Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2014) Xylogenesis of
Pinus pinaster under a Mediterranean climate. Ann For Sci 71:71–80. doi:
10.1007/s13595-013-0341-5 CrossRef Google Scholar
Wang Z, Yang B, Deslauriers A, Bräuning A (2015) Intra-annual stem radial increment response of
Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 29:25–34
CrossRef Google Scholar
Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in
Eucalyptus nitens , grown under different irrigation regimes. Ann For Sci 59:519–524
CrossRef Google Scholar
Zhai L, Bergeron Y, Huang JG, Berninger F (2012) Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. Am J Bot 99:827–837. doi:
10.3732/ajb.1100235 CrossRef PubMed Google Scholar
Zweifel R, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877
CrossRef PubMed Google Scholar
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:
10.1093/jxb/erj125 CrossRef PubMed Google Scholar
Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol. doi:
10.1111/nph.13995 PubMed Google Scholar
© Springer-Verlag Berlin Heidelberg 2016
For further details log on website :
https://link.springer.com/article/10.1007/s00468-016-1492-4
No comments:
Post a Comment