Published Date
April 2017 , Volume 31, Issue 2 , pp 743–751
Author
Adriana Príncipe Email author
Ernst van der Maaten
Marieke van der Maaten-Theunissen
Thomas Struwe
Martin Wilmking
Juergen Kreyling
Original Article
DOI : 10.1007/s00468-016-1505-3
Cite this article as:
Príncipe, A., van der Maaten, E., van der Maaten-Theunissen, M. et al. Trees (2017) 31: 743. doi:10.1007/s00468-016-1505-3
Abstract
Key message
European beech showed low resistance but high resilience in radial growth after an extreme late frost event. Site-specific growth reductions correlated with absolute minimum temperature in May .
Abstract
Late spring frost events occurring after the early leaf unfolding (“false spring”) can result in severe leaf damages in deciduous trees. With climate warming, such damages may occur more frequently due to an earlier start of the growing season. While affected, mature trees usually survive, but radial and height growth after the late frost has rarely been quantified in relation to the magnitude of the frost events. The effects of a severe late frost event in the early May 2011, following a warm spring and early bud break, was quantified for European beech (Fagus sylvatica L.) at 7 forest stands in Bavaria, Germany. Resistance and resilience of tree growth were quantified based on tree-ring widths of 135 trees. Resistance to the late frost event (comparing tree-ring width in the frost year with the previous 5 years) was on average reduced by 46%. Resistance was positively correlated with May minimum temperature at the study sites, indicating a relationship between growth reduction and frost severity. Partial least-square linear models based on monthly climate data (precipitation, temperature, potential evapotranspiration, and the Standardized Precipitation Evapotranspiration Index) could not explain the growth reduction in 2011, thereby providing evidence for the importance of frost damages on annual growth. F. sylvatica showed high resilience after the frost year, with tree-ring widths in the subsequent years being comparable to the previous years. This study suggests that frost events may strongly reduce growth of F. sylvatica in the event year, but that carry-over effects on the radial growth of subsequent years are not likely.
Keywords
Dendroecology Tree rings False spring European beech Frost damage
Electronic supplementary material
The online version of this article (doi:
10.1007/s00468-016-1505-3 ) contains supplementary material, which is available to authorized users.
References
Allstadt AJ, Vavrus SJ, Heglund PJ, Pidgeon AM, Thogmartin WE, Radeloff VC (2015) Spring plant phenology and false springs in the conterminous US during the 21st century. Environ Res Lett 10(10):e104008
(24 p) CrossRef Google Scholar
Augspurger CK (2009) Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct Ecol 23(6):1031–1039
CrossRef Google Scholar
Augspurger CK (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94(1):41–50
CrossRef PubMed Google Scholar
Awaya Y, Tanaka K, Kodani E, Nishizono T (2009) Responses of a beech (Fagus crenata Blume) stand to late spring frost damage in Morioka, Japan. Forest Ecol Manag 257(12):2359–2369
CrossRef Google Scholar
Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten (2011) Waldbericht 2011, München. URL:
http://www.stmelf.bayern.de/mam/cms01/wald/waldschutz/dateien/waldbericht-2011.pdf
Bendixsen DP, Hallgren SW, Frazier AE (2015) Stress factors associated with forest decline in xeric oak forests of south-central United States. Forest Ecol Manag 347:40–48
CrossRef Google Scholar
Bräuning A, de Ridder M, Zafirov N, García-González I, Petrov Dimitrov D, Gärtner H (2016) Tree-ring features: indicators of extreme event impacts. IAWA Journal 37(2):206–231
CrossRef Google Scholar
Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124
CrossRef Google Scholar
Čufar K, Prislan P, de Luis M, Gričar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees Struct Funct 22(6):749–758
CrossRef Google Scholar
Day WR, Peace TR (1946) Spring Frosts—With Special Reference to the Frosts of May 1935. Forestry Commission, Her Majesty’s Stationery Office, Bulletin 8
Dittmar C, Elling W (2007) Dendroecological investigation of the vitality of Common Beech (
Fagus sylvatica L.) in mixed mountain forests of the Northern Alps (South Bavaria). Dendrochronologia 25(1):37–56
CrossRef Google Scholar
Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (
Fagus sylvatica L.) in Southern Germany. Eur J Forest Res 125(3):249–259
CrossRef Google Scholar
Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (
Fagus sylvatica L.) in southern Sweden. Forest Ecol Manag 259(11):2160–2171
CrossRef Google Scholar
DWD (2016) Phänologiestatistik Rotbuche: Blattentfaltung.
http://www.dwd.de/DE/leistungen/phaeno_sta/phaenosta.html?nn=588524 . Retrieved 20.10.2016
Garthwaite PH (1994) An interpretation of partial least squares. J Am Statist Ass 89(425):122–127
CrossRef Google Scholar
Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (
Fagus sylvatica L.) in a changing climate. Trees Struct Funct 21(1):1–11
CrossRef Google Scholar
Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience 58(3):253–262
CrossRef Google Scholar
Hogg EH, Hart M, Lieffers V (2002) White tree rings formed in trembling aspen saplings following experimental defoliation. Can J Forest Res 32(11):1929–1934
CrossRef Google Scholar
Hope RM (2013) Rmisc: Ryan miscellaneous. R package version 1.5. URL:
https://CRAN.R-project.org/package=Rmisc
Hufkens K, Friedl MA, Keenan TF, Sonnentag O, Bailey A, O’Keefe J, Richardson AD (2012) Ecological impacts of a widespread frost event following early spring leaf-out. Glob Change Biol 18(7):2365–2377
CrossRef Google Scholar
Jaremo J, Nilsson P, Tuomi J (1996) Plant compensatory growth: herbivory or competition? Oikos 77(2):238–247
CrossRef Google Scholar
Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of
Fagus sylvatica . Glob Change Biol 12(11):2163–2174
CrossRef Google Scholar
Kollas C, Koerner C, Randin CF (2014a) Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J Biogeogr 41(4):773–783
CrossRef Google Scholar
Kollas C, Randin CF, Vitasse Y, Koerner C (2014b) How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data? Agric Forest Meteorol 184:257–266
CrossRef Google Scholar
Kramer K (1994) A modeling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17(4):367–377
CrossRef Google Scholar
Kreyling J, Stahlmann R, Beierkuhnlein C (2012a) Räumliche Variation in der Blattschädigung von Waldbäumen nach dem extremen Spätfrostereignis im Mai 2011—Spatial variation in leaf damage of forest trees and the regeneration after the extreme spring frost event in May 2011. Allgemeine Forst- und Jagdzeitung 183:15–22
Google Scholar
Kreyling J, Thiel D, Nagy L, Jentsch A, Huber G, Konnert M, Beierkuhnlein C (2012b) Late frost sensitivity of juvenile
Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature. Eur J Forest Res 131(3):717–725
CrossRef Google Scholar
Larcher W (2003) Physiological Plant Ecology, 4th edn. Springer, Berlin
CrossRef Google Scholar
Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (
Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees Struct Funct 19(4):385–401
CrossRef Google Scholar
Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of
Fagus sylvatica : soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Ann Forest Sci 63(4):355–368
CrossRef Google Scholar
Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120(12):1909–1920
CrossRef Google Scholar
Marino GP, Kaiser DP, Gu L, Ricciuto DM (2011) Reconstruction of false spring occurrences over the southeastern United States, 1901–2007: an increasing risk of spring freeze damage? Environ Res Lett 6(2):e024015
(8p) CrossRef Google Scholar
Menzel A, Helm R, Zang C (2015) Patterns of late spring frost leaf damage and recovery in a European beech (
Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Fron. Plant Sci 6:110
Google Scholar
Mevik B-H, Wehrens R (2007) The pls package: principal component and partial least squares regression in R. J Stat Software 18(1):1–23
CrossRef Google Scholar
Moning C, Müller J (2009) Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (
Fagus sylvatica L.) dominated forests. Ecol Indicat 9(5):922–932
CrossRef Google Scholar
Müller-Haubold H, Hertel D, Leuschner C (2015) Climatic drivers of mast fruiting in European beech and resulting C and N allocation shifts. Ecosystems 18(6):1083–1100
CrossRef Google Scholar
Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze E-D (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704
CrossRef PubMed Google Scholar
Piovesan G, Adams JA (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Botany 79(9):1039–1047
Google Scholar
Potop V, Zahraniček P, Türkott L, Štěpánek P, Soukup J (2014) Risk occurrences of damaging frosts during the growing season of vegetables in the Elbe River lowland, the Czech Republic. Nat Hazards 71(1):1–19
CrossRef Google Scholar
R Core Team (2016) R: a language and environment for statistical computing.: R version 3.2.3. R Foundation for Statistical Computing. ISBN 3-900051-07-0,
http://www.R-project.org , Vienna, Austria
Rigby JR, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35(12):L12703
CrossRef Google Scholar
Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of
Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol Manag 262(6):947–961
CrossRef Google Scholar
Stahle DW (1990) The Tree-Ring Record of False Spring in the Southcentral USA, Dissertation, Arizona State Univ
van der Maaten E (2012) Climate sensitivity of radial growth in European beech (
Fagus sylvatica L.) at different aspects in southwestern Germany. Trees Struct Funct 26(3):777–788
CrossRef Google Scholar
van der Maaten-Theunissen M, van der Maaten E, Bouriaud O (2015) pointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia 35:34–38
CrossRef Google Scholar
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Climate 23(7):1696–1718
CrossRef Google Scholar
Wickham H (2011) The Split-Apply-Combine Strategy for data analysis. J Stat Software 40(1):1–29
CrossRef Google Scholar
© Springer-Verlag Berlin Heidelberg 2016
For further details log on website :
https://link.springer.com/article/10.1007/s00468-016-1505-3
No comments:
Post a Comment