Blog List

Wednesday, 11 October 2017

Assessing specific gravity of young Eucalyptus plantation trees using a resistance drilling technique

Author
José Tarcísio da Silva Oliveira / Xiping Wang / Graziela Baptista Vidaurre
Published Online: 2016-09-24 | DOI: https://doi.org/10.1515/hf-2016-0058

Abstract

The resistance drilling technique has been in focus for assessing the specific gravity (SG) of young Eucalyptus trees from plantations for pulpwood production. Namely, the data of 50 34-month-old and 50 62-month-old trees from Eucalyptus grandis×Eucalyptus urophylla clonal plantations was evaluated, while the relative resistance profiles were collected with the amplitude in a scale from 0 to 100% of each tree at the breast height. For laboratory determination of SG and moisture content (MC), 3-cm-thick disks were taken at breast height. The average resistance amplitude of a full drill penetration or a half-diameter penetration showed weak correlations with SG for both 34-month-old and 62-month-old trees. However, when the two age classes were combined, the strength of the relationship was improved significantly, with a correlation coefficient ranging from 0.71 to 0.77 with respect to SG determined from strip samples and from 0.59 to 0.72 with respect to SG determined from wedge samples. The drill penetration depth had a significant effect on the relationship between average amplitude and SG. A clear trend of weakening correlation was observed with increasing drill penetration. As a result, the average resistance amplitude of a half-diameter drilling (from bark-to-pith) is more advantageous for assessing the SG of young Eucalyptus trees than a whole-diameter drilling.
Keywords: amplitudedensitydrill penetration depthplantation treesresistographspecific gravity

References

  • ASTM D2395-14. Standard test methods for density and specific gravity (relative density) of wood and wood-based materials. American Society for Testing and Materials, West Conshohocken, PA, 2014.Google Scholar
  • Bath, K.M., Bath, K.V., Dhamodaran, T.K. (1990) Wood density and fiber length of Eucalyptus grandis grown in Kerala, India. Wood Fiber Sci. 22:54–61.Google Scholar
  • Brashaw, B.K., Wang, X., Fellman, D., Ross, R.J., Xu, H. (2013) Acoustic assessment technologies for optimal wood products and biomass utilization. In: Proceedings of the 18th International Symposium on Nondestructive Testing and Evaluation of Wood, September 24–27, 2013, Madison, WI. pp. 150–160.Google Scholar
  • Carmo, A.P.T. (1996) Evaluation of some properties of six eucalypt wood species. Dissertation, Federal University of Viçosa, Brazil.Google Scholar
  • Chan, J.M., Raymond, C.A., Walker, J.C. (2010) Non-destructive assessment of green density and moisture condition in plantation-grown radiata pine (Pinus radiata D. Don.) by increment core measurements. Holzforschung 64:521–528.Google Scholar
  • Colodette, J.L., Gomes, C.M., Gomes, F.J.B. (2012) The Brazilian forest industry: focusing on eucalypt. In: Proceedings of the IUFRO Division 5 (Forest Products) Conference, July 8–13, 2012, Lisbon, Portugal. pp. 51–56.Google Scholar
  • Costa, V.E., de Rezende, M.A., Rodrigues, V.A. (2014) Conversion between basic density and apparent density at any moisture content in Eucalyptus grandis. Holzforschung 68:981–986.Google Scholar
  • Eckard, J.T., Isik, F., Bullock, B., Li, B., Gumpertz, M. (2010) Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods. Forest Sci. 356:233–241.Google Scholar
  • Fantuzzi, N.H. (2012) Eucalypt wood quality to cellulose kraft production. Thesis, Federal University of Viçosa, Brazil.Google Scholar
  • Ferreira, M., Kageyama, P.Y. (1978) Genetic improvement of eucalypt wood density. Silvicultura 14:148–152.Google Scholar
  • Gao, S., Wang, X., Brashaw, B.K., Ross, R.J., Wang, L. (2012) Rapid assessment of wood density of standing trees with nondestructive methods – A review. In: Proceedings, International Conference on Biobased Mat. Sci. Eng. (BMSE), October 21–23, 2012, Changsha, China. pp. 262–267.Google Scholar
  • Gomide, J.L., Colodette, J.L., Oliveira, R.C., Silva, C.M. (2005) Technological characterization for pulpwood, the new generation of Eucalyptus clones of Brazil. J. Brazilian Forest Sci. 29:129–137.Google Scholar
  • Görlacher, R., Hättrich, R. (1990) Untersuchung von altern Konstruktionsholz: Die Bohrwiderstandsmessung. Bauen mit. Holz. 92:455–459.Google Scholar
  • Gouvêa, A.F.G., Trugilho, P.F., Gomide, J.L., Silva, J.R.M., Andrade, C.R., Alves, I.C.N. (2011a) Determination of Eucalyptus basic density by different non-destructive methods. J. Brazilian Forest Sci. 35:349–358.Google Scholar
  • Gouvêa, A.F.G., Trugilho, P.F., Colodete, J.L., Bianchi, M.L., Soragi, L.C., Oliveira, A.C. (2011b) Relationship among wood characteristics and Eucalyptus cellulose pulp with the non-destructive methods in the living tree. Scientia Forestalis 39:205–220.Google Scholar
  • Gwaze, D., Stevenson, A. (2008) Genetic variation of wood density and its relationship with drill resistance in shortleaf pine. South J. Appl. For. 32:130–133.Google Scholar
  • Hillis, W.E. (2000) Wood quality and growing to meet market requirements. In: Proceedings, The Future of Eucalypts for Wood Products. March 19–24, 2000, Launceston, Tasmania, Australia. pp. 256–260.Google Scholar
  • Hillis, W.E., Brown, A.G. Eucalyptus for wood production. CSIRO, Melbourne, 1978.Google Scholar
  • Iliadis, L., Mansfield, S.D., Avramidis, S., El-Kassaby, Y.A. (2013) Predicting Douglas-fir wood density by artificial neural networks (ANN) based on progeny testing information. Holzforschung 67:771–777.Google Scholar
  • Inagaki, T., Hartley, I.D., Tsuchikawa, S., Reid, M. (2014) Prediction of oven-dry density of wood by time-domain terahertz spectroscopy. Holzforschung 68:61–68.Google Scholar
  • Isik, F., Li, B. (2003) Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Canadian J. Forest Res. 33: 2426–2435.Google Scholar
  • Kollmann, F.F.P., Cotê, W.A. Principles of wood science and technology: Solid wood. Springer-Verlag, Berlin, 1968, 592 p.Google Scholar
  • Kothiyal, V., Raturi, A. (2011) Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy. Holzforschung 65:757–762.Google Scholar
  • Lima, T.G. (1995) Variations in radial and longitudinal direction of some properties of Eucalyptus microcorys F. Muell e Eucalyptus pilularis Sm woods. Dissertation, Federal University of Viçosa, Brazil.Google Scholar
  • Lima, J.T., Breese, M.C., Cahalan, C.M. (2000) Variation in wood density and mechanical properties in Eucalyptus clones. In: Proceedings, The Future of Eucalypts for Wood Products. March 19–24, 2000, Launceston, Tasmania, Australia. pp. 282–291.Google Scholar
  • Lima, J.T., Hein, P.R.G., Trugilho, P.F., Silva, J.R.M. (2006) Resistograph performance in estimating the specific gravity of eucalyptus wood. In: Proceedings of the 11th Brazilian Meeting of Wood and Wood Structures, March 10–12, 2006, São Pedro, SP. pp. 122–125.Google Scholar
  • Lima, J.T., Sartorio, R.S., Trugilho, P.F., Cruz, C.R., Vieira, R.S. (2007) Use of the resistograph for Eucalyptus wood basic density and perforation resistance estimative. Scientia Forestalis 75:85–93.Google Scholar
  • Lima, J.T., Trugilho, P.F., Silva, J.R.M. (2010) Relationship between drilling resistance and specific gravity of eucalypt wood. In: Proceedings of the 12th Brazilian Meeting of Wood and Wood Structures, July 25–28, 2010, Lavras, MG. pp. 279–181.Google Scholar
  • Mansfield, S.D., Parish, R., Ott, P.K., Hart, J.F., Goudie, J.W. (2016) Assessing the wood quality of interior spruce (Picea glauca×P. engelmannii): variation in strength, relative density, microfibril angle, and fiber length. Holzforschung 70:223–234.Google Scholar
  • Ohshima, J., Yokota, S., Yoshizawa, N., Ona, T. (2000) Feasibility study of quality plantation pulpwood breeding on fibre length, vessel element length and their ratio sought by within-tree variations in Eucalyptus trees. Forestry Studies 54:37–47.Google Scholar
  • Oliveira, J.T.S. (1998) Eucalyptus wood characterization for civil construction. Thesis, University of São Paulo, Brazil. 429 p.Google Scholar
  • Ponneth, D., Vasu, A.E., Easwaran, J.C., Mohandass, A., Chauhan, S.S. (2014) Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation. Holzforschung 68:951–956.Google Scholar
  • Rezende, M.A., Ferraz, E.S.B. (1985) Annual wood density of Eucalyptus grandis. Forestry Sci. Res. Institute 30:37–41.Google Scholar
  • Ribeiro, F.A., Zani, F.J. (1993) Variation of basic density of the wood species/provenances of Eucalyptus spp. Forestry Sci. Res. Institute 46:76–85.Google Scholar
  • Rinn, F., Schweingruber, F.H., Schar, E. (1996) Resistograph and X-ray density charts of wood: comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 50:303–311.Google Scholar
  • Shimoyama, V.R.S., Barrichelo, L.E.G. (1991) Influence of anatomical and chemical characteristics in the basic density of eucalypt wood. In: Proceedings of the 24th Annual Congress of ABTCP, São Paulo, SP. pp. 23–36.Google Scholar
  • Silva, J.C. (2002) Wood characterization of Eucalyptus grandis Hill ex. Maiden wood of different ages aiming its utilization in the furniture industry. Thesis, Federal University of Paraná, Brazil.Google Scholar
  • S.A.G.E. (2012) Statistical Analysis for Genetic Epidemiology, Release 6.3: http://darwin.cwru.edu.
  • Stewart, H.A., Polak, D.J. (1975) Relating specific gravity and mechanical properties of hardwoods to matching defects. Forest Prod. J. 35:69–72.Google Scholar
  • Tomazello, F.M. (1985a) Radial variation of basic density and anatomical structure of Eucalyptus saligna and Eucalyptus grandis wood. Forestry Sci. Res. Institute 29:37–45.Google Scholar
  • Tomazello, F.M. (1985b) Anatomical structure of eight eucalypt wood species grown in Brazil. Forestry Sci. Res. Institute 29:25–36.Google Scholar
  • Ukrainetz, N.K., O’Neill, G.A. (2010) An analysis of sensitivities contributing measurement error to Resistograph values. Canadian J. Forest Res. 40:806–811.Google Scholar
  • Wang, S., Little, R.C., Rockwood, D.L. (1984) Variation in density and moisture content of wood and bark among twenty Eucalyptus grandis progenies. Wood Sci. Technol. 18:97–112.Google Scholar

About the article

Received: 2016-03-23
Accepted: 2016-08-19
Published Online: 2016-09-24
Published in Print: 2017-02-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0058.
©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center
For further details log on website :
https://www.degruyter.com/view/j/hfsg.2017.71.issue-2/hf-2016-0058/hf-2016-0058.xml?rskey=BCyRzR&result=5

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...