Blog List

Wednesday, 11 October 2017

Improvement of shear strength, wood failure percentage and wet delamination of cross-laminated timber (CLT) panels made with superheated steam treated (SHST) layers of larch wood

Author
Yeonjung Han  / Yonggun Park / Yoon-Seong Chang / Hyunwoo Chung / Chang-Deuk Eom / Hwanmyeong Yeo
Published Online: 2017-06-22 | DOI: https://doi.org/10.1515/hf-2017-0008


Abstract

Cross-laminated timber (CLT) panels – consisting of several cross-wise stacked layers of glued boards – have a high dimensional stability. However, the outer surfaces of CTL are exposed to environmental humidity changes and thus to swelling and shrinking. To improve CLT’s dimensional stability further, the layers of kiln dried (KD) CLT were substituted partly (on the surfaces) and entirely with superheated steam treated (SHST) wood. The effects of SHST wood and the performance of the one-component polyurethane resin (PUR) were tested by block shear and delamination tests after water soaking. Under various conditions, the shear strength ranged from 1.3 MPa to 4.7 MPa and the wood failure percentage (WFP) from 76% to 92%. The optimal parameter were ascertained as pressing time (30–45 min), pressure (0.98 MPa) and adhesive amount (175–200 g m−2). The water soaked delamination of CLT manufactured with SHST wood was approximately 50% lower than that of CLT made of KD wood.
Keywords: cross-laminated timber (CLT)delaminationfailure modelarchpolyurethane resin (PUR)shear strengthwood failure percentage (WPC)

References

  • Abe, K., Yamamoto, H. (2006) Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment. J. Wood Sci. 52:107–110.CrossrefGoogle Scholar
  • Aicher, S., Dill-Langer, G. (2000) Basic considerations to rolling shear modulus in wooden boards. Otto Graf J. 11:157–166.Google Scholar
  • American Society for Testing and Materials (2011) ASTM D 2718, Standard test methods for structural panels in planar shear (rolling shear).Google Scholar
  • American National Standard Institute (2012) ANSI/APA PRG 320, Standard for performance-rated cross-laminated timber.Google Scholar
  • American Society for Testing and Materials (2013) ASTM D 5266, Standard practice for estimating the percentage of wood failure in adhesive bonded joints.Google Scholar
  • Bhuiyan, T., Hirai, N. (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 46:431–436.CrossrefGoogle Scholar
  • Blaß, H.J., Görlacher, R. (2003) Brettsperrholz: Berechnungsgrundlagen (in German). Holzbau Kalender, Bruder, Karlsruhe, pp. 580–598.Google Scholar
  • Boone, R.S., Kozlik, C.J., Bois, P.J., Wengert, E.M. Dry kiln schedules for commercial woods-temperate and tropical (Gen Tech Rep FPL-GTR-57). Forest Products Laboratory, Madison, 1988.Google Scholar
  • Boonstra, M., Van Acker, J., Tjeerdsma, B., Kegel, E. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. Forest Sci. 64:679–690.CrossrefWeb of ScienceGoogle Scholar
  • Chu, D., Mu, J., Zhang, L., Li, Y. (2017) Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 1: Color generation, dimensional stability, and fire retardancy. Holzforschung, 71:207–215.Web of ScienceGoogle Scholar
  • European Committee for Standardization (2015) EN 16351, Timber structures−cross laminated timber−requirements.Google Scholar
  • Fellmoser, P., Blaß, H.J. (2004) Influence of rolling shear modulus on strength and stiffness of structural bonded timber elements. CIB-W18 meeting 37, Edinburgh.Google Scholar
  • Gagnon, S., Popovski, M. (2011) Structural design of cross-laminated timber elements. Chapter 3. In: CLT Handbook. FPInnovations, Quebec, pp. 1–67.Google Scholar
  • Gagnon, S., Bilek, E.M., Podestro, L., Crespell, P. (2011) Introduction to cross-laminated timber. Chapter 1. In: CLT Handbook. FPInnovations, Quebec, pp. 1–37.Google Scholar
  • Hosseinpourpia, R., Mai, C. (2016) Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent. Holzforschung 70:691–697.Web of ScienceGoogle Scholar
  • Javed, M.A., Kekkonen, P.M., Ahola, S., Telkki, V.-V. (2015) Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 69:899–907.CrossrefWeb of ScienceGoogle Scholar
  • Kim, H.K., Oh, J.K., Lim, J.A., Kim, H.B., Park, C.Y., Pang, S.J., Kim, C.K., Lee, J.J. (2013a) The investigation of optimum adhesive condition in cross-laminated larch wood (in Korean). Proceedings of the Korean Society of Wood Science and Technology Annual Meeting, Daejeon, Korea, 2013. pp. 10–11.Google Scholar
  • Kim, H.K., Oh, J.K., Jeong, G.Y., Yeo, H., Lee, J.J. (2013b) Shear performance of PUR adhesive in cross laminating of red pine (in Korean). J. Korean Wood Sci. Technol. 41:158–163.CrossrefGoogle Scholar
  • Kim, J.S., Gao, J., Terziev, N., Cuccui, I., Daniel, G. (2015a) Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry. Holzforschung 69:603–613.Web of ScienceGoogle Scholar
  • Kim, J.S., Gao, J., Terziev, N., Allegretti, O., Daniel, G. (2015b) Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immunocytochemical study of the distribution of noncellulosic polysaccharides. Holzforschung 69:615–625.Web of ScienceGoogle Scholar
  • Korean Standards Association (2013a) KS F 3021, Structural glued laminated timber (in Korean).
  • Korean Standards Association (2013b) KS F 2160, Delamination of resistance to soaking delamination for adhesive-bonded wood products.
  • Korkut, S., Akgü, M., Dündar, T. (2008) The effects of heat treatment on some technological properties of Scot pine (Pinus sylvestris L.) wood. Bioresour. Technol. 99:1861–1868.CrossrefGoogle Scholar
  • Kubojima, Y., Okano, T., Ohta, M. (2000) Bending strength of heat-treated wood. J. Wood Sci. 46:8–15.CrossrefGoogle Scholar
  • Li, T., Cai, J.-b., Avramidis, S., Cheng, D.-l., Wålinder, M.E.P., Zhou, D.-g. (2017) Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung 71:515–520.Web of ScienceCrossrefGoogle Scholar
  • Militz, H. (2002) Heat treatment of wood: European processes and their background. In: International Research Group Wood Preservation, Section 4-Processes, No IRG/WP 02-40241.Google Scholar
  • Munthe, B.P., Ethington, R.L. (1968) Method for evaluating shear properties of wood (Res note FPL-0195). Forest Products Laboratory, Madison.Google Scholar
  • Pang, S. (2002) Predicting anisotropic shrinkage of softwood Part 1: Theories. Wood Sci. Technol. 36:75–91.CrossrefGoogle Scholar
  • Park, Y., Eom, C.D., Han, Y., Park, J.H., Chang, Y.S., Yang, S.Y., Choi, J.W., Yeo, H. (2014) Combined treatment of green pitch pine wood by heat and superheated steam and the effects on physical properties of the products. Holzforschung 68:327–335.CrossrefWeb of ScienceGoogle Scholar
  • Repelin, V., Guyonnet, R. (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59:28–34.Google Scholar
  • Schickhofer, G. (2002) Brettsperrholz: Anwendungen und Konstruktionsdetails im mehrgeschossigen Wohn- und Kommunalbau (in German). In: Tagungsband Ingenieurholzbau – Karlsruher Tage 2002. Bruderverlag, Karlsruhe, pp. 284–305.Google Scholar
  • Sonderegger, W., Mannes, D., Kaestner, A., Hovind, J., Lehmann, E. (2015) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 69:87–95.Web of ScienceCrossrefGoogle Scholar
  • Tuong, V.M., Li, J. (2011) Changes caused by heat treatment in chemical composition and some physical properties of acacia hybrid sapwood. Holzforschung 65:67–72.Web of ScienceCrossrefGoogle Scholar
  • Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.CrossrefWeb of ScienceGoogle Scholar
  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.Web of ScienceGoogle Scholar
  • Yamamoto, H., Sassus, F., Ninomiya, M., Gril, J. (2001) A model of anisotropic swelling and shrinking process of wood Part 2: A simulation of shrinking wood. Wood Sci. Technol. 35:167–181.CrossrefGoogle Scholar
  • Yawalata, D., Lam, F. (2011) Development of technology for cross laminated timber building systems. Res rep submitted to Forestry Innovation Investment Ltd., FPInnovation, Vancouver.Google Scholar
  • Zhou, Q., Gong, M., Chui, Y.H., Mohammad, M. (2014) Measurement of rolling shear modulus and strength of cross laminated timber fabricated with black spruce. Constr. Build. Mater. 64:379–386.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-01-14
Accepted: 2017-05-12
Published Online: 2017-06-22

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0008.
©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center
For further details logon website :
https://www.degruyter.com/view/j/hfsg.ahead-of-print/hf-2017-0008/hf-2017-0008.xml?rskey=tMudrZ&result=1

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...