Blog List

Wednesday, 11 October 2017

Assessing the wood quality of interior spruce (Picea glauca × P. engelmannii): variation in strength, relative density, microfibril angle, and fiber length

Author
Shawn D. Mansfield / Roberta Parish / Peter K. Ott / James F. Hart / James W. Goudie
Published Online: 2015-07-04 | DOI: https://doi.org/10.1515/hf-2015-0008

Abstract

A dynamic interrelationship exists among wood density and fiber traits (tracheid length and microfibril angel, MFA) and the ultimate wood strength properties. Moreover, many of the basic fundamental wood attributes are heavily influenced by crown size and architecture. In an attempt to examine this interplay, we thoroughly characterized 60 interior spruce (Picea glauca × P. engelmannii) trees sampled in three age classes from four sites in central British Columbia. Breast height discs were taken, and relative wood density was measured along two radii. Tracheid length was assessed on isolated 5 years increments from pith to bark at breast height for each tree, as was MFA. Segmented regression was used to identify the “juvenile to mature wood” transition point, which revealed transition ages of 9.4 and 15.1 years for wood density and MFA, respectively, while fiber length continued to elongate until near 60 years of age. The flexural properties, modulus of elasticity (MoE) and modulus of rupture (MoR), were also quantified in the 60 individuals and found to be best predicted by VFV, a measure of tree vigor, and not the basic wood attributes. These findings imply that long crowns carrying large amounts of foliage, VFV, negatively impact wood strength in interior spruce.
Keywords: crown characteristicsfiber traitsinterior sprucejuvenile woodmature woodmodulus of elasticitymodulus of rupturewood density

References

  • Alteyrac, J., Cloutier, A., Ung, C.-H., Zhang, S.Y. (2006) Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fib. Sci. 38:229–237.Google Scholar
  • BC Ministry of Forests, Mines and Lands. The State of British Columbia’s Forests, 3rd ed. Forest Practices and Investment Branch, Victoria, BC, 2010. www.for.gov.bc.ca/hfp/sof/index.htm#2010_report.
  • Burnham, K.P., Anderson, D.R. Model Selection and Inference. A Practical Information-Theoretical Approach. Springer, New York, 2002. p. 488.Google Scholar
  • Chalk, L. (1930) Tracheid length with special reference to Sitka spruce (Picea sitchensis Carr.). Forestry 4:7–14.Google Scholar
  • Cown, D.J., Herbert, J., Ball, R. (1999) Modelling Pinus radiata lumber characteristics. Part 1. Mechanical properties of small clears. N. Z. J. For. Sci. 29:203–213.Google Scholar
  • Dinwoodie, J.M. (1961) Tracheid and fibre length in timber; a review of the literature. Forestry 34:125–144.Google Scholar
  • Dutilleul, P., Herman, M., Avella-Shaw, T. (1998) Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway Spruce (Picea abies). Can. J. For. Res. 28:56–68.Google Scholar
  • Ericson, B. (1966) Effect of thinning on the basic density and content of latewood and heartwood in Scots pine and Norway spruce. Royal College of Forestry, Department of Forest Yield Res. Res. Notes No. 10. (In Swedish with English summary).Google Scholar
  • Helander, A.B. (1933) Variations in tracheid length of pine and spruce. Found. Forest. Prod. Res. Finland, Publ. No. 14, p. 75 (In Finnish with English summary).Google Scholar
  • Jaakkola, T., Mäkinen, H. Saranpää, P. (2005a) Wood density in Norway spruce: changes with thinning intensity and tree age. Can. J. For. Res. 35:1767–1778.Google Scholar
  • Jaakkola, T., Mäkinen, H., Sarén, M.-P., Saranpää, P. (2005b) Does thinning intensity affect the tracheid dimensions of Norway spruce? Can. J. For. Res. 35:2685–2697.Google Scholar
  • Janas, P. S. Brand, D. G. (1988) Comparative growth and development of planted and natural stands of jack pine. Forest. Chron. 64:320–328.CrossrefGoogle Scholar
  • Jozsa, L.A., Kellogg, R.M. An Exploratory Study of the Density and Annual Ring Weight Trends in Fast Growth Coniferous Woods in British Columbia. Forintek Can. Corp., Vancouver, BC, 1986. p. 1v.Google Scholar
  • Jyske, T., Kaakinen, S., Nilsson, U., Saranpää, P., Vapaavuori, E. (2010) Effects of timing and intensity of thinning on wood structure and chemistry in Norway spruce. Holzforschung 64:81–91.Web of ScienceCrossrefGoogle Scholar
  • Kang, K.-Y., Zhang, S.Y., Mansfield, S.D. (2004) The effects of initial spacing on wood density, fibre and pulp properties in Jack pine (Pinus banksiana Lamb.) Holzforschung 58:455–463.CrossrefGoogle Scholar
  • Kliger, I.R., Perstorper, M., Johansson, G., Pellicane, P.J. (1995) Quality of timber products from Norway spruce. Part 3. Influence of spatial position and growth characteristics on bending stiffness and strength. Wood Sci. Technol. 29:397–410.Google Scholar
  • Kliger, I.R., Perstorper, M., Johansson, G. (1998) Bending properties of Norway spruce timber. Comparison between fast- and slow-grown stands and influence of radial position of sawn timber. Ann. Sci. For. 55:349–358.Google Scholar
  • Larson, P.R. (1969) Wood formation and the concept of wood quality. Yale University, School Forestry Bulletin 74 New Haven, CT. pp 54.Google Scholar
  • Lenz, P., Cloutier, A., MacKay, J., Beaulieu, J. (2010) Genetic control of wood properties in Picea glauca – an analysis of trends with cambial age. Can. J. For. Res. 40:703–715.Google Scholar
  • Liu, C., Zhang, S.Y., Cloutier, A., Rycabel, T. (2007) Modeling lumber bending stiffness and strength in natural black spruce stands using stand and tree characteristics. For. Ecol. Manage. 242:648–655.Web of ScienceGoogle Scholar
  • Mäkinen, H., Saranpää, P., Linder S. (2002) Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 32:185–194.Google Scholar
  • Mansfield, S.D., Parish, R., Goudie, J.W., Kang, K.-Y., Ott, P. (2007) The effects of crown ratio on the transition from juvenile to mature wood in lodgepole pine in western Canada. Can. J. For. Res. 37:1450–1499.Google Scholar
  • Mansfield, S.D., Parish, R., Di Lucca, C.M., Goudie, J.W., Kang, K-Y., Ott, P.K. (2009) Revisiting the transition between juvenile and mature wood: a comparison of fibre length, microfibril angle and relative wood density in lodgepole pine. Holzforschung 63:449–456.Web of ScienceCrossrefGoogle Scholar
  • Middleton, G.R. Munro, B.D. Wood Density of Alberta White Spruce – Implications for Silvicultural Practices. Prepared for Manning Diversified Forest Products Research, Forintek Canada Corp., Vancouver, BC, 2002. p. 23.Google Scholar
  • Middleton, G.R. Munro, B.D. Wood Attributes of Short-Rotation Interior Spruce in British Columbia: A First Appreciation of Product Potential. FPInnovations, Vancouver, BC, 2012. p. 59.Google Scholar
  • Middleton, G.R. Munro, B.D. Wood Attributes of BC Central Interior Spruce Related to Rotation Age. FPInnovations, Vancouver, BC, 2013. p. 29.Google Scholar
  • Middleton, G.R., Munro, B.D., Sadlish, J. Influence of Growth Rate on Strength and Related Wood Properties of Boreal White Spruce. Forest Renewal BC. Forintek Canada Corp., Vancouver, BC, 2000. p. 66.Google Scholar
  • Neter, J., Wasserman, W., M.H. Kunter. Applied Linear Statistical Models. Regression, Analysis of Variance, and Experimental Designs, 3rd ed. Irwin. Burr Ridge, Illinois, 1990. p. 1181.Google Scholar
  • Pape, R. (1999) Effects of thinning regime on the wood properties and stem quality of Picea abies. Scand. J. For. Res. 14:38–50.Google Scholar
  • Petty, J.A., Macmillan, D.C., Steward, C.M. (1990) Variation of density and growth ring width in stems of Sitka and Norway spruce. Forestry 63:39–49.CrossrefGoogle Scholar
  • Schabenberger, O. Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences. CRC Press, New York, 2002.Google Scholar
  • Sirviö, J. Kärenlampi, P. (2000) Two scales of variation in Norway spruce tracheid properties. Wood Fibre Sci. 32:311–331.Google Scholar
  • Sjolte-Jorgensen, J. (1967) The influence of spacing on the growth and development of coniferous plantations. Int. Rev. For. Res. 2:43–94.CrossrefGoogle Scholar
  • Taylor, F.W., Wang, E.I.C., Yanchuk, A., Micko, M.M. (1982) Specific gravity and tracheid length variation of white spruce in Alberta. Can. J. For. Res. 12:61–566.Google Scholar
  • Ukrainetz, N.K., Ritland, K., Mansfield, S.M. (2008) Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Gen. Genome 4:159–170.Google Scholar
  • Vasiljevic, S. (1955) Tracheid length within growth ring. University of Belgrade, Bulletin of the College of Forestry, 10:161–190. (English summary).Google Scholar
  • Vezina, P.E. (1964) An analysis of measures of density in even-aged balsam fir and jack pine stands. Forest. Chron. 40:474–481.CrossrefGoogle Scholar
  • Wang, H.H., Drummond, J.G., Reath, S.M., Hunt, K., Watson, P.A. (2001) An improved fibril angle measurement method for wood fibres. Wood Sci. Tech. 34:493–503.CrossrefGoogle Scholar
  • Watt, M.S., Moore, J.R., Façon, J.P., Downes, G.M., Clinton, P.W., Coker, G., Davis, M.R., Simcock, R., Parfit, R.L., Dando, J., Mason, E.G., Brown, H.E. (2006) Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. For. Ecol. Manage. 229:136–144.Google Scholar
  • Wood, S.N. Generalized Additive Models and Introduction with R. Chapman & Hall/CRC, Boca Raton, Florida, 2006. p. 392.Google Scholar
  • Yang, K.-C. (2002) Impact of spacing on juvenile wood and mature wood properties of white spruce (Picea glauca). Taiwan J. For. Sci. 17:13–29.Google Scholar
  • Zubizarreta Gerendiain, A., Pelota, H., Pulkkinen, P., Ikonen, V.-P., Jaatinen, R. (2008) Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in Southern Finland. Silva Fenn. 42:423–437.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Shawn D. Mansfield, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada, Phone: +604-822-0196, Fax: +604-822-9104, e-mail: 

Received: 2015-01-08
Accepted: 2015-06-03
Published Online: 2015-07-04
Published in Print: 2016-03-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2015-0008.
©2016 by De Gruyter. Copyright Clearance Center
For further details log on website :
https://www.degruyter.com/view/j/hfsg.2016.70.issue-3/hf-2015-0008/hf-2015-0008.xml?rskey=BCyRzR&result=7

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...