Blog List

Wednesday, 11 October 2017

Facile surface hydrophobization of medium-density fiberboard (MDF) by silver deposition

Author
Xiaodi Ji / Minghui Guo
Published Online: 2017-01-13 | DOI: https://doi.org/10.1515/hf-2016-0106

Abstract

A facile and effective method for the surface hydrophobization of medium-density fiberboards (MDFs) via the silver (Ag) mirror reaction has been investigated. The pristine MDF surface was treated with silver nitrate (AgNO3) and subsequently with glucose to reduce Ag ions into Ag particles, which led to dual-size surface roughness. The roughness and morphology of the Ag-coated MDF surface were characterized by scanning electron microscopy (SEM), and the elemental composition and the crystal structure of the surface were determined via energy-dispersive X-ray spectroscopy (EDXS) and X-ray diffraction (XRD) analyses. The wettability of the MDF surface was measured by contact angle (CA) measurements. The results indicated that pure Ag particles were successfully deposited onto the MDF surface without any impurities. The Ag surface coating was water repellent as indicated by a CA of 136°, which slightly decreased with time. The hydrophobicity was derived from the air trapped in the surface cavities and the dual-size roughness.
Keywords: Ag coatingmedium-density fiberboardsurface hydrophobicity

References

  • Andersson, S., Serimaa, R., Paakkari, T., Saranpää, P., Pesonen, E. (2003). Crystallinity of wood and the size of cellulose crystallites in norway spruce (picea abies). J. Wood Sci. 49:531–537.Google Scholar
  • Cai, L., Fu, Q., Niu, M., Wu, Z., Xie, Y. (2016). Effect of chlorinated paraffin nanoemulsion on the microstructure and water repellency of ultra-low density fiberboard. Bioresources 11:4579–4592.CrossrefGoogle Scholar
  • Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647.Google Scholar
  • Chou, K.-S., Huang, K.-C., Lee, H.-H. (2005). Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology 16:779.CrossrefGoogle Scholar
  • Dubas, S.T., Kumlangdudsana, P., Potiyaraj, P. (2006). Layer-by layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid. Surface. A. 289:105–109.Google Scholar
  • Gan, W., Gao, L., Zhang, W., Li, J., Zhan, X. (2016). Fabrication of microwave absorbing CoFe2O4 coatings with robust superhydrophobicity on natural wood surfaces. Ceram. Int. 42:13199–13206.Google Scholar
  • Gao, L., Lu, Y., Li, J., Sun, Q. (2015). Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane. Holzforschung 70:63–68.Web of ScienceGoogle Scholar
  • Grünwaldt, J.D., Atamny, F., Göbel, U., Baiker, A. (1996). Preparation of thin silver films on mica studied by xrd and afm. Appl. Surf. Sci. 99:353–359.Google Scholar
  • Hu, J., Du, W., Ji, X., Yuan, B., Liu, Y., Guo, M. (2016). The chemistry, morphology, crystal structure and hydrophilicity properties of wood fibers treated by a magnetic immobilized laccase–mediator system. Rsc Adv. 6:32572–32579.Google Scholar
  • Kumar, A., Ryparova, P., Skapin, A.S., Humar, M., Pavlic, M., Tywoniak, J., Hajek, P., Zigon, J., Petric, M. (2016). Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 23:3249–3263.CrossrefGoogle Scholar
  • Liu, Y.H., Ruan, R.S., Zhang, J.S., Lin, X.Y., Liu, C.M., Tu, Z.C., Gao, Y.Y. (2005). Research situation of starch based wood adhesives. Chem. Adhes. 27:358–361.Google Scholar
  • Li, J., Yu, H., Sun, Q., Liu, Y., Cui, Y., Lu, Y. (2010). Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl. Surf. Sci. 256:5046–5050.Google Scholar
  • Liu, F., Gao, Z., Zang, D., Wang, C., Li, J. (2014) Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung 69:367–374.Web of ScienceGoogle Scholar
  • Liu, M., Yan, Q., Wu, Y., Liang, J., Luo, S. (2015). Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Appl. Surf. Sci.330:332–338.Web of ScienceGoogle Scholar
  • Lu, X., Hu, Y. (2016). Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance. Bioresources 11:4605–4620.CrossrefGoogle Scholar
  • Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q. (2014). Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung 68:345–351.Google Scholar
  • Moghaddam, M.S., Heydari, G., Tuominen, M., Fielden, M., Haapanen, J., Makela, J.M., Walinder, M.E., P., Claesson, P.M., Swerin, A. (2016). Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung 70:527–537.CrossrefWeb of ScienceGoogle Scholar
  • Mohan, D.B., Reddy, V.S., Sunandana, C.S. (2007). AgI nanostructure development in sputter-disordered and Al-doped Ag films probed by XRD, SEM, optical absorption and photoluminescence. Appl. Phys. A 86:73–82.Web of ScienceCrossrefGoogle Scholar
  • Pap, A.E., Kordás, K., Peura, R., Leppävuori, S. (2002). Simultaneous chemical silver and palladium deposition on porous silicon; fesem, tem, edx and xrd investigation. Appl. Surf. Sci. 201:56–60.Google Scholar
  • Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27:76–83.Web of ScienceGoogle Scholar
  • Rajesh, D., Sunandana, C.S. (2012). Briefly brominated ag thin films: XRD, FESEM, and optical studies ofsurface modification. Appl. Surf. Sci. 259:276–282.Google Scholar
  • Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci. 275:177–182.Google Scholar
  • Su, R., Liu, H., Kong, T., Song, Q., Li, N., Jin, G., Cheng, G. (2011). Tuning Surface Wettability of InxGa(1-x)N Nanotip Arrays by Phosphonic Acid Modification and Photoillumination. Langmuir 27:13220–13225.Web of ScienceCrossrefGoogle Scholar
  • Sun, Q., Lu, Y., Liu, Y., (2011). Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J. Mater. Sci. 46:7706–7712.Google Scholar
  • Tien, H.-W., Huang, Y.-L. Yang, S.-Y., Wang, J.-Y., Ma, C.-C. M. (2011). The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 49:1550–1560.Web of ScienceCrossrefGoogle Scholar
  • Wang, C., Cheng, P., Lucas, C. (2011). Synthesis and characterization of superhydrophobic wood surfaces. J. Appl. Polym. Sci. 119:1667–1672.Google Scholar
  • Wang, X., Chai, Y., Liu, J. (2013) Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long chain alkylsilane. Holzforschung 67:667–672.Web of ScienceGoogle Scholar
  • Xue, C.-H., Chen, J., Yin, W., Jia, S.T., Ma, J.Z. (2012). Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 258:2468–2472.Web of ScienceGoogle Scholar
  • Yang, H. (2008). Fundamentals, preparation, and characterization of superhydrophobic wood fiber products. Georgia Institute of Technology 300:271–276.Google Scholar
  • Young, R.A. (1994). Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130.Google Scholar
  • Zheng, R., Tshabalala, M.A., Li, Q., Wang, H. (2015). Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures. Appl. Surf. Sci. 328:453–458.Google Scholar
  • Zhou, Y., Li, M., Su, B., Lu, Q. (2009). Superhydrophobic surface created by the silver mirror reaction and its drag-reduction effect on water. J. Mater. Chem. 23:21–24.Web of ScienceGoogle Scholar

About the article

Received: 2016-07-01
Accepted: 2016-12-05
Published Online: 2017-01-13
Published in Print: 2017-04-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0106.
©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center
For further details log on website :
https://www.degruyter.com/view/j/hfsg.2017.71.issue-4/hf-2016-0106/hf-2016-0106.xml?rskey=BCyRzR&result=4

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...